Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Apache Spark 2.x for Java Developers

You're reading from   Apache Spark 2.x for Java Developers Explore big data at scale using Apache Spark 2.x Java APIs

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781787126497
Length 350 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (2):
Arrow left icon
Sourav Gulati Sourav Gulati
Author Profile Icon Sourav Gulati
Sourav Gulati
Sumit Kumar Sumit Kumar
Author Profile Icon Sumit Kumar
Sumit Kumar
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Introduction to Spark FREE CHAPTER 2. Revisiting Java 3. Let Us Spark 4. Understanding the Spark Programming Model 5. Working with Data and Storage 6. Spark on Cluster 7. Spark Programming Model - Advanced 8. Working with Spark SQL 9. Near Real-Time Processing with Spark Streaming 10. Machine Learning Analytics with Spark MLlib 11. Learning Spark GraphX

Operations on feature vectors


Though the spark.ml package uses the dataframe for ML workflows, depending on the use case one might need to extract data from raw dataframe or transform the dataframe in a format as required by the ML algorithms or at times one might just need a few selected parameters as feature vectors. All these different types of operations require usage of specially developed APIs that can be clubbed into the following categories.

Feature extractors

When the data present in a raw dataframe are not explicitly present in the form an ML algorithm expects we use feature extractors to extract those features. Common feature extractors are:

  • CountVectorizer: A CountVectorizer converts a collection of text documents into a vector representing the word count of text documents. CountVectorizer works in two different ways depending how the value of the dictionary gets populated. Let's first assume that the user has no prior information of the type of data that will populate the dataset...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime