In this chapter, we saw how to develop a neural network model that helps to solve a classification type of problem. We started with a simple classification model and explored how to change the number of hidden layers and the number of units in the hidden layers. The idea behind exploring and fine-tuning a classification model was to illustrate how to explore and improve the performance of the classification model. We also saw how to dig deeper to understand the performance of a classification model with the help of a confusion matrix. We purposefully looked at a relatively smaller neural network model at the beginning of this chapter and finished with an example of a relatively deeper neural network model. Deeper networks involving several hidden layers can also lead to overfitting problems, where a classification model may have excellent performance with training data...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand