9. Hotspot Analysis
Activity 9.01: Estimating Density in One Dimension
Solution:
- Open a new notebook and install all the necessary libraries.
get_ipython().run_line_magic('matplotlib', 'inline') import matplotlib.pyplot as plt import numpy import pandas import seaborn import sklearn.model_selection import sklearn.neighbors seaborn.set()
- Sample 1,000 data points from the standard normal distribution. Add 3.5 to each of the last 625 values of the sample (that is, the indices between 375 and 1,000). Set a random state of 100 using
numpy.random.RandomState
to guarantee the same sampled values, and then randomly generate the data points using therand.randn(1000)
call:rand = numpy.random.RandomState(100) vals = rand.randn(1000) # standard normal vals[375:] += 3.5
- Plot the 1,000-point sample data as a histogram and add a scatterplot below it:
fig, ax = plt.subplots(figsize=(14, 10)) ax.hist(vals, bins=50, density=True, label='Sampled Values&apos...