Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
The Applied Artificial Intelligence Workshop

You're reading from   The Applied Artificial Intelligence Workshop Start working with AI today, to build games, design decision trees, and train your own machine learning models

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781800205819
Length 420 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Anthony So Anthony So
Author Profile Icon Anthony So
Anthony So
Zsolt Nagy Zsolt Nagy
Author Profile Icon Zsolt Nagy
Zsolt Nagy
William So William So
Author Profile Icon William So
William So
Arrow right icon
View More author details
Toc

Table of Contents (8) Chapters Close

Preface
1. Introduction to Artificial Intelligence 2. An Introduction to Regression FREE CHAPTER 3. An Introduction to Classification 4. An Introduction to Decision Trees 5. Artificial Intelligence: Clustering 6. Neural Networks and Deep Learning Appendix

Support Vector Regression

SVMs are binary classifiers and are usually used in classification problems (you will learn more about this in Chapter 3, An Introduction to Classification). An SVM classifier takes data and tries to predict which class it belongs to. Once the classification of a data point is determined, it gets labeled. But SVMs can also be used for regression; that is, instead of labeling data, it can predict future values in a series.

The SVR model uses the space between our data as a margin of error. Based on the margin of error, it makes predictions regarding future values.

If the margin of error is too small, we risk overfitting the existing dataset. If the margin of error is too big, we risk underfitting the existing dataset.

In the case of a classifier, the kernel describes the surface dividing the state space, whereas, in a regression, the kernel measures the margin of error. This kernel can use a linear model, a polynomial model, or many other possible...

You have been reading a chapter from
The Applied Artificial Intelligence Workshop
Published in: Jul 2020
Publisher: Packt
ISBN-13: 9781800205819
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image