Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Scala for Machine Learning

You're reading from   Scala for Machine Learning Leverage Scala and Machine Learning to construct and study systems that can learn from data

Arrow left icon
Product type Paperback
Published in Dec 2014
Publisher
ISBN-13 9781783558742
Length 624 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Patrick R. Nicolas Patrick R. Nicolas
Author Profile Icon Patrick R. Nicolas
Patrick R. Nicolas
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Getting Started FREE CHAPTER 2. Hello World! 3. Data Preprocessing 4. Unsupervised Learning 5. Naïve Bayes Classifiers 6. Regression and Regularization 7. Sequential Data Models 8. Kernel Models and Support Vector Machines 9. Artificial Neural Networks 10. Genetic Algorithms 11. Reinforcement Learning 12. Scalable Frameworks A. Basic Concepts Index

Summary

This concludes the description and implementation of linear and logistic regression and the concept of regularization to reduce overfitting. Your first analytical projects using machine learning will (or did) likely involve a regression model of some type. Regression models, along with the Naïve Bayes classification, are the most understood techniques for those without a deep knowledge of statistics or machine learning.

At the completion of this chapter, you hopefully have a grasp on the following:

  • The concept of linear and nonlinear least squares-based optimization
  • The implementation of ordinary least square regression as well as logistic regression
  • The impact of regularization with an implementation of the Ridge regression

The logistic regression is also the foundation of the conditional random fields introduced in the next chapter and artificial neural networks in Chapter 9, Artificial Neural Networks.

Contrary to the Naïve Bayes models (refer to Chapter 5, Naïve Bayes...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image