Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Scala and Spark for Big Data Analytics

You're reading from   Scala and Spark for Big Data Analytics Explore the concepts of functional programming, data streaming, and machine learning

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781785280849
Length 796 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (2):
Arrow left icon
Sridhar Alla Sridhar Alla
Author Profile Icon Sridhar Alla
Sridhar Alla
Md. Rezaul Karim Md. Rezaul Karim
Author Profile Icon Md. Rezaul Karim
Md. Rezaul Karim
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Introduction to Scala FREE CHAPTER 2. Object-Oriented Scala 3. Functional Programming Concepts 4. Collection APIs 5. Tackle Big Data – Spark Comes to the Party 6. Start Working with Spark – REPL and RDDs 7. Special RDD Operations 8. Introduce a Little Structure - Spark SQL 9. Stream Me Up, Scotty - Spark Streaming 10. Everything is Connected - GraphX 11. Learning Machine Learning - Spark MLlib and Spark ML 12. My Name is Bayes, Naive Bayes 13. Time to Put Some Order - Cluster Your Data with Spark MLlib 14. Text Analytics Using Spark ML 15. Spark Tuning 16. Time to Go to ClusterLand - Deploying Spark on a Cluster 17. Testing and Debugging Spark 18. PySpark and SparkR

History and purposes of Scala

Scala is a general-purpose programming language that comes with support of functional programming and a strong static type system. The source code of Scala is intended to be compiled into Java bytecode, so that the resulting executable code can be run on Java virtual machine (JVM).

Martin Odersky started the design of Scala back in 2001 at the École Polytechnique Fédérale de Lausanne (EPFL). It was an extension of his work on Funnel, which is a programming language that uses functional programming and Petri nets. The first public release appears in 2004 but with only on the Java platform support. Later on, it was followed by .NET framework in June 2004.

Scala has become very popular and experienced wide adoptions because it not only supports the object-oriented programming paradigm, but it also embraces the functional programming concepts. In addition, although Scala's symbolic operators are hardly easy to read, compared to Java, most of the Scala codes are comparatively concise and easy to read -e.g. Java is too verbose.

Like any other programming languages, Scala was prosed and developed for specific purposes. Now, the question is, why was Scala created and what problems does it solve? To answer these questions, Odersky said in his blog:

"The work on Scala stems from a research effort to develop better language support for component software. There are two hypotheses that we would like to validate with the Scala experiment. First, we postulate that a programming language for component software needs to be scalable in the sense that the same concepts can describe small as well as large parts. Therefore, we concentrate on mechanisms for abstraction, composition, and decomposition, rather than adding a large set of primitives, which might be useful for components at some level of scale but not at other levels. Second, we postulate that scalable support for components can be provided by a programming language which unifies and generalizes object-oriented and functional programming. For statically typed languages, of which Scala is an instance, these two paradigms were up to now largely separate."

Nevertheless, pattern matching and higher order functions, and so on, are also provided in Scala, not to fill the gap between FP and OOP, but because they are typical features of functional programming. For this, it has some incredibly powerful pattern-matching features, which are an actor-based concurrency framework. Moreover, it has the support of the first- and higher-order functions. In summary, the name "Scala" is a portmanteau of scalable language, signifying that it is designed to grow with the demands of its users.

You have been reading a chapter from
Scala and Spark for Big Data Analytics
Published in: Jul 2017
Publisher: Packt
ISBN-13: 9781785280849
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image