Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Python for Finance Cookbook – Second Edition
Python for Finance Cookbook – Second Edition

Python for Finance Cookbook – Second Edition: Over 80 powerful recipes for effective financial data analysis , Second Edition

Arrow left icon
Profile Icon Eryk Lewinson
Arrow right icon
Mex$1025.99
Full star icon Full star icon Full star icon Full star icon Half star icon 4.9 (37 Ratings)
Paperback Dec 2022 740 pages 2nd Edition
eBook
Mex$573.99 Mex$820.99
Paperback
Mex$1025.99
Subscription
Free Trial
Arrow left icon
Profile Icon Eryk Lewinson
Arrow right icon
Mex$1025.99
Full star icon Full star icon Full star icon Full star icon Half star icon 4.9 (37 Ratings)
Paperback Dec 2022 740 pages 2nd Edition
eBook
Mex$573.99 Mex$820.99
Paperback
Mex$1025.99
Subscription
Free Trial
eBook
Mex$573.99 Mex$820.99
Paperback
Mex$1025.99
Subscription
Free Trial

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Table of content icon View table of contents Preview book icon Preview Book

Python for Finance Cookbook – Second Edition

Getting data from CoinGecko

The last data source we cover is dedicated purely to cryptocurrencies. CoinGecko is a popular data vendor and crypto tracking website, on which you can find real-time exchange rates, historical data, information about exchanges, upcoming events, trading volumes, and much more.

We can list a few of the advantages of CoinGecko:

  • completely free, no need to register for an API key
  • aside from prices, they also provide updates and news about crypto
  • it covers many coins, not only the most popular ones

In this recipe, we download Bitcoin's OHLC from the last 14 days.

How to do it…

Execute the following steps to download data from CoinGecko.

  1. Import the libraries:
from pycoingecko import CoinGeckoAPI
from datetime import datetime
  1. Instantiate the CoinGecko API:
cg = CoinGeckoAPI()
  1. Get Bitcoin's OHLC prices from the last 14 days:
ohlc = cg.get_coin_ohlc_by_id(id="bitcoin", vs_currency="usd", days="14")
ohlc_df...

Summary

In this chapter, we have covered a few of the most popular sources of financial data. However, this is just the tip of the iceberg. Below, you can find a list of other interesting data sources that might suit your needs even better.

Additional data sources:

  • IEX Cloud (https://iexcloud.io/) - a platform providing a vast trove of different financial data. A notable feature that is unique to the platform is a daily and minutely sentiment score based on the activity on Stocktwits - an online community for investors and traders. However, that API is only available in the paid plan. You can access the IEX Cloud data using pyex, the official Python library.
  • Tiingo (https://www.tiingo.com/) and the tiingo library.
  • CryptoCompare (https://www.cryptocompare.com/) - the platform offers a wide range of crypto-related data via their API. What stands out about this data vendor is that they provide order book data.
  • twelvedata (https://twelvedata.com/)
  • polygon.io (https://polygon.io/) - a trusted...

Adjusting the returns for inflation

When doing different kinds of analyses, especially long-term ones, we might want to consider inflation. Inflation is the general rise of the price level of an economy over time. Or to phrase it differently, the reduction of the purchasing power of money. That is why we might want to decouple the inflation from the increase of the stock prices caused by, for example, the companies’ growth or development.

We can naturally adjust the prices of stocks directly, but in this recipe, we will focus on adjusting the returns and calculating the real returns. We can do so using the following formula:

where Rrt is the real return, Rt is the time t simple return, and stands for the inflation rate.

For this example, we use Apple’s stock prices from the years 2010 to 2020 (downloaded as in the previous recipe).

How to do it…

Execute the following steps to adjust the returns for inflation:

  1. Import libraries...

Changing the frequency of time series data

When working with time series, and especially financial ones, we often need to change the frequency (periodicity) of the data. For example, we receive daily OHLC prices, but our algorithm works with weekly data. Or we have daily alternative data, and we want to match it with our live feed of intraday data.

The general rule of thumb for changing frequency can be broken down into the following:

  • Multiply/divide the log returns by the number of time periods.
  • Multiply/divide the volatility by the square root of the number of time periods.

For any process with independent increments (for example, the geometric Brownian motion), the variance of the logarithmic returns is proportional to time. For example, the variance of rt3 - rt1 is going to be the sum of the following two variances: rt2−rt1 and rt3−rt2, assuming t1t2t3. In such a case, when we also assume that the parameters of...

Different ways of imputing missing data

While working with any time series, it can happen that some data is missing, due to many possible reasons (someone forgot to input the data, a random issue with the database, and so on). One of the available solutions would be to discard observations with missing values. However, imagine a scenario in which we are analyzing multiple time series at once, and only one of the series is missing a value due to some random mistake. Do we still want to remove all the other potentially valuable pieces of information because of this single missing value? Probably not. And there are many other potential scenarios in which we would rather treat the missing values somehow, rather than discarding those observations.

Two of the simplest approaches to imputing missing time series data are:

  • Backward filling—fill the missing value with the next known value
  • Forward filling—fill the missing value with the previous known value...

Converting currencies

Another quite common preprocessing step you might encounter while working on financial tasks is converting currencies. Imagine you have a portfolio of multiple assets, priced in different currencies and you would like to arrive at a total portfolio’s worth. The simplest example might be American and European stocks.

In this recipe, we show how to easily convert stock prices from USD to EUR. However, the very same steps can be used to convert any pair of currencies.

How to do it…

Execute the following steps to convert stock prices from USD to EUR:

  1. Import the libraries:
    import pandas as pd
    import yfinance as yf
    from forex_python.converter import CurrencyRates
    
  2. Download Apple’s OHLC prices from January 2020:
    df = yf.download("AAPL",
                     start="2020-01-01",
                     end="2020-01-31",
                     progress=False)
    df = df.drop(columns=[&quot...

Different ways of aggregating trade data

Before diving into building a machine learning model or designing a trading strategy, we not only need reliable data, but we also need to aggregate it into a format that is convenient for further analysis and appropriate for the models we choose. The term bars refers to a data representation that contains basic information about the price movements of any financial asset. We have already seen one form of bars in Chapter 1, Acquiring Financial Data, in which we explored how to download financial data from a variety of sources.

There, we downloaded OHLCV data sampled by some time period, be it a month, day, or intraday frequencies. This is the most common way of aggregating financial time series data and is known as the time bars.

There are some drawbacks of sampling financial time series by time:

  • Time bars disguise the actual rate of activity in the market—they tend to oversample low activity periods (for example,...

Summary

In this chapter, we have learned how to preprocess financial time series data. We started by showing how to calculate returns and potentially adjust them for inflation. Then, we covered a few of the popular methods for imputing missing values. Lastly, we explained the different approaches to aggregating trade data and why choosing the correct one matters.

We should always pay significant attention to this step, as we not only want to enhance our model’s performance but also to ensure the validity of any analysis. In the next chapter, we will continue working with the preprocessed data and learn how to create time series visualization.

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Explore unique recipes for financial data processing and analysis with Python
  • Apply classical and machine learning approaches to financial time series analysis
  • Calculate various technical analysis indicators and backtest trading strategies

Description

Python is one of the most popular programming languages in the financial industry, with a huge collection of accompanying libraries. In this new edition of the Python for Finance Cookbook, you will explore classical quantitative finance approaches to data modeling, such as GARCH, CAPM, factor models, as well as modern machine learning and deep learning solutions. You will use popular Python libraries that, in a few lines of code, provide the means to quickly process, analyze, and draw conclusions from financial data. In this new edition, more emphasis was put on exploratory data analysis to help you visualize and better understand financial data. While doing so, you will also learn how to use Streamlit to create elegant, interactive web applications to present the results of technical analyses. Using the recipes in this book, you will become proficient in financial data analysis, be it for personal or professional projects. You will also understand which potential issues to expect with such analyses and, more importantly, how to overcome them.

Who is this book for?

This book is intended for financial analysts, data analysts and scientists, and Python developers with a familiarity with financial concepts. You’ll learn how to correctly use advanced approaches for analysis, avoid potential pitfalls and common mistakes, and reach correct conclusions for a broad range of finance problems. Working knowledge of the Python programming language (particularly libraries such as pandas and NumPy) is necessary.

What you will learn

  • Preprocess, analyze, and visualize financial data
  • Explore time series modeling with statistical (exponential smoothing, ARIMA) and machine learning models
  • Uncover advanced time series forecasting algorithms such as Meta's Prophet
  • Use Monte Carlo simulations for derivatives valuation and risk assessment
  • Explore volatility modeling using univariate and multivariate GARCH models
  • Investigate various approaches to asset allocation
  • Learn how to approach ML-projects using an example of default prediction
  • Explore modern deep learning models such as Google's TabNet, Amazon's DeepAR and NeuralProphet
Estimated delivery fee Deliver to Mexico

Standard delivery 10 - 13 business days

Mex$149.95

Premium delivery 3 - 6 business days

Mex$299.95
(Includes tracking information)

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Dec 30, 2022
Length: 740 pages
Edition : 2nd
Language : English
ISBN-13 : 9781803243191
Category :
Languages :
Concepts :
Tools :

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Estimated delivery fee Deliver to Mexico

Standard delivery 10 - 13 business days

Mex$149.95

Premium delivery 3 - 6 business days

Mex$299.95
(Includes tracking information)

Product Details

Publication date : Dec 30, 2022
Length: 740 pages
Edition : 2nd
Language : English
ISBN-13 : 9781803243191
Category :
Languages :
Concepts :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just Mex$85 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just Mex$85 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total Mex$ 3,302.97
Modern Time Series Forecasting with Python
Mex$1086.99
Python for Finance Cookbook – Second Edition
Mex$1025.99
Machine Learning for Algorithmic Trading
Mex$1189.99
Total Mex$ 3,302.97 Stars icon

Table of Contents

17 Chapters
Acquiring Financial Data Chevron down icon Chevron up icon
Data Preprocessing Chevron down icon Chevron up icon
Visualizing Financial Time Series Chevron down icon Chevron up icon
Exploring Financial Time Series Data Chevron down icon Chevron up icon
Technical Analysis and Building Interactive Dashboards Chevron down icon Chevron up icon
Time Series Analysis and Forecasting Chevron down icon Chevron up icon
Machine Learning-Based Approaches to Time Series Forecasting Chevron down icon Chevron up icon
Multi-Factor Models Chevron down icon Chevron up icon
Modeling Volatility with GARCH Class Models Chevron down icon Chevron up icon
Monte Carlo Simulations in Finance Chevron down icon Chevron up icon
Asset Allocation Chevron down icon Chevron up icon
Backtesting Trading Strategies Chevron down icon Chevron up icon
Applied Machine Learning: Identifying Credit Default Chevron down icon Chevron up icon
Advanced Concepts for Machine Learning Projects Chevron down icon Chevron up icon
Deep Learning in Finance Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.9
(37 Ratings)
5 star 86.5%
4 star 13.5%
3 star 0%
2 star 0%
1 star 0%
Filter icon Filter
Top Reviews

Filter reviews by




bin Sep 11, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book is very comprehensive, with useful knowledge points. It is really a highly recommended book!
Subscriber review Packt
Rubens C. Machado Jun 07, 2024
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Feefo Verified review Feefo
David Zhang May 01, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Die 2. Version ist nochmal viel kompakter als die erste von vor 3 Jahren. Grundlegende als auch tiefgreifende Prozesse der Statistik und Programmierung werden gut erklärt dargestellt. Die fast 800 Seiten des Buches decken theoretisch mehr als nur einen ganzen Semester ab.
Amazon Verified review Amazon
Ram Seshadri Feb 08, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I was recently given the Python for Finance cookbook to review by Packt based on my experience with Finance and ML. I have to say that this is one hell of a book!! It is one of the most comprehensive and sweeping write-ups of Python in Finance I have read. Just for starters: it’s 720 pages long.Second, it has over 15 chapters covering everything from downloading and processing Time series data to EDA to modeling and finally explaining and evaluating results.The book provides over 80 recipes for everything from ARIMA to Garch to ML to Monte Carlo. The subjects range from derivatives evaluation to asset management and Bitcoin forecasting.The book has tons and tons of code. Every page is filled with step by step instructions with code and charts and graphs. I can go and on. If there is only one book that you plan to buy for learning to apply Python to financial problems, this is probably the book to buy. Highly recommended!
Amazon Verified review Amazon
Asha Jan 19, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Having just started as a Junior Data Scientist this book was really helpful for time series analysis and forecasting. It's not for beginners you need to have some basic understanding of Python and data analysis to get the most out of this book. I don't work in the Finance industry but it was nice to learn more about financial data.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is the delivery time and cost of print book? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela
What is custom duty/charge? Chevron down icon Chevron up icon

Customs duty are charges levied on goods when they cross international borders. It is a tax that is imposed on imported goods. These duties are charged by special authorities and bodies created by local governments and are meant to protect local industries, economies, and businesses.

Do I have to pay customs charges for the print book order? Chevron down icon Chevron up icon

The orders shipped to the countries that are listed under EU27 will not bear custom charges. They are paid by Packt as part of the order.

List of EU27 countries: www.gov.uk/eu-eea:

A custom duty or localized taxes may be applicable on the shipment and would be charged by the recipient country outside of the EU27 which should be paid by the customer and these duties are not included in the shipping charges been charged on the order.

How do I know my custom duty charges? Chevron down icon Chevron up icon

The amount of duty payable varies greatly depending on the imported goods, the country of origin and several other factors like the total invoice amount or dimensions like weight, and other such criteria applicable in your country.

For example:

  • If you live in Mexico, and the declared value of your ordered items is over $ 50, for you to receive a package, you will have to pay additional import tax of 19% which will be $ 9.50 to the courier service.
  • Whereas if you live in Turkey, and the declared value of your ordered items is over € 22, for you to receive a package, you will have to pay additional import tax of 18% which will be € 3.96 to the courier service.
How can I cancel my order? Chevron down icon Chevron up icon

Cancellation Policy for Published Printed Books:

You can cancel any order within 1 hour of placing the order. Simply contact customercare@packt.com with your order details or payment transaction id. If your order has already started the shipment process, we will do our best to stop it. However, if it is already on the way to you then when you receive it, you can contact us at customercare@packt.com using the returns and refund process.

Please understand that Packt Publishing cannot provide refunds or cancel any order except for the cases described in our Return Policy (i.e. Packt Publishing agrees to replace your printed book because it arrives damaged or material defect in book), Packt Publishing will not accept returns.

What is your returns and refunds policy? Chevron down icon Chevron up icon

Return Policy:

We want you to be happy with your purchase from Packtpub.com. We will not hassle you with returning print books to us. If the print book you receive from us is incorrect, damaged, doesn't work or is unacceptably late, please contact Customer Relations Team on customercare@packt.com with the order number and issue details as explained below:

  1. If you ordered (eBook, Video or Print Book) incorrectly or accidentally, please contact Customer Relations Team on customercare@packt.com within one hour of placing the order and we will replace/refund you the item cost.
  2. Sadly, if your eBook or Video file is faulty or a fault occurs during the eBook or Video being made available to you, i.e. during download then you should contact Customer Relations Team within 14 days of purchase on customercare@packt.com who will be able to resolve this issue for you.
  3. You will have a choice of replacement or refund of the problem items.(damaged, defective or incorrect)
  4. Once Customer Care Team confirms that you will be refunded, you should receive the refund within 10 to 12 working days.
  5. If you are only requesting a refund of one book from a multiple order, then we will refund you the appropriate single item.
  6. Where the items were shipped under a free shipping offer, there will be no shipping costs to refund.

On the off chance your printed book arrives damaged, with book material defect, contact our Customer Relation Team on customercare@packt.com within 14 days of receipt of the book with appropriate evidence of damage and we will work with you to secure a replacement copy, if necessary. Please note that each printed book you order from us is individually made by Packt's professional book-printing partner which is on a print-on-demand basis.

What tax is charged? Chevron down icon Chevron up icon

Currently, no tax is charged on the purchase of any print book (subject to change based on the laws and regulations). A localized VAT fee is charged only to our European and UK customers on eBooks, Video and subscriptions that they buy. GST is charged to Indian customers for eBooks and video purchases.

What payment methods can I use? Chevron down icon Chevron up icon

You can pay with the following card types:

  1. Visa Debit
  2. Visa Credit
  3. MasterCard
  4. PayPal
What is the delivery time and cost of print books? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela