Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Deep Learning

You're reading from   Python Deep Learning Exploring deep learning techniques and neural network architectures with PyTorch, Keras, and TensorFlow

Arrow left icon
Product type Paperback
Published in Jan 2019
Publisher Packt
ISBN-13 9781789348460
Length 386 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (5):
Arrow left icon
Gianmario Spacagna Gianmario Spacagna
Author Profile Icon Gianmario Spacagna
Gianmario Spacagna
Daniel Slater Daniel Slater
Author Profile Icon Daniel Slater
Daniel Slater
Valentino Zocca Valentino Zocca
Author Profile Icon Valentino Zocca
Valentino Zocca
Peter Roelants Peter Roelants
Author Profile Icon Peter Roelants
Peter Roelants
Ivan Vasilev Ivan Vasilev
Author Profile Icon Ivan Vasilev
Ivan Vasilev
+1 more Show less
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Machine Learning - an Introduction FREE CHAPTER 2. Neural Networks 3. Deep Learning Fundamentals 4. Computer Vision with Convolutional Networks 5. Advanced Computer Vision 6. Generating Images with GANs and VAEs 7. Recurrent Neural Networks and Language Models 8. Reinforcement Learning Theory 9. Deep Reinforcement Learning for Games 10. Deep Learning in Autonomous Vehicles 11. Other Books You May Enjoy

The structure of a convolutional network

Before going further, let's put together everything we have learned so far. In the figure following we can see the structure of a basic CNN:

A basic convolutional network with convolutional and fully-connected layers in blue and pooling layers in green

Most CNNs share basic properties. Here are some of them:

  • We would typically alternate one or more convolutional layers with one pooling layer. In this way, the convolutional layers can detect features at every level of the receptive field size. The aggregated receptive field size of deeper layers is larger than the ones at the beginning of the network. This allows them to capture more complex features from larger input regions. Let's illustrate this with an example. Imagine that the network uses 3x3 convolutions with stride 1 and 2x2 pooling with stride 2:
    • The neurons of the...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image