Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Data Mining Quick Start Guide

You're reading from   Python Data Mining Quick Start Guide A beginner's guide to extracting valuable insights from your data

Arrow left icon
Product type Paperback
Published in Apr 2019
Publisher Packt
ISBN-13 9781789800265
Length 188 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Nathan Greeneltch Nathan Greeneltch
Author Profile Icon Nathan Greeneltch
Nathan Greeneltch
Arrow right icon
View More author details
Toc

Table of Contents (9) Chapters Close

Preface 1. Data Mining and Getting Started with Python Tools 2. Basic Terminology and Our End-to-End Example FREE CHAPTER 3. Collecting, Exploring, and Visualizing Data 4. Cleaning and Readying Data for Analysis 5. Grouping and Clustering Data 6. Prediction with Regression and Classification 7. Advanced Topics - Building a Data Processing Pipeline and Deploying It 8. Other Books You May Enjoy

Clustering methods

The clustering methods in scikit-learn have a nice congruent usage that, for the most part, matches the following pseudocode across all the algorithms:

### this is pseudocode. it will not execute ###
# import module and instantiate method object
from sklearn.cluster import Method
clus = Method(args*)

# fit to input data
clus.fit(X_input)

# get cluster assignments of X_input
X_assigned = clus.labels_

The rest of this chapter will cover some common methods used for data clustering. The following is a group of plots comparing different cluster methods and how they assign data points into groups:

Take a minute to study the preceding "Comparing Cluster Methods" screenshot and look for any qualitative trends or patterns before reading the following sections. Your goal should be to read the rest of the chapter looking for validation of your qualitative pattern...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime