Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
PySpark Cookbook

You're reading from   PySpark Cookbook Over 60 recipes for implementing big data processing and analytics using Apache Spark and Python

Arrow left icon
Product type Paperback
Published in Jun 2018
Publisher Packt
ISBN-13 9781788835367
Length 330 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (2):
Arrow left icon
Tomasz Drabas Tomasz Drabas
Author Profile Icon Tomasz Drabas
Tomasz Drabas
Denny Lee Denny Lee
Author Profile Icon Denny Lee
Denny Lee
Arrow right icon
View More author details
Toc

Table of Contents (9) Chapters Close

Preface 1. Installing and Configuring Spark FREE CHAPTER 2. Abstracting Data with RDDs 3. Abstracting Data with DataFrames 4. Preparing Data for Modeling 5. Machine Learning with MLlib 6. Machine Learning with the ML Module 7. Structured Streaming with PySpark 8. GraphFrames – Graph Theory with PySpark

Preface

Apache Spark is an open source framework for efficient cluster computing with a strong interface for data parallelism and fault tolerance. This book presents effective and time-saving recipes for leveraging the power of Python and putting it to use in the Spark ecosystem.

You'll start by learning about the Apache Spark architecture and seeing how to set up a Python environment for Spark. You'll then get familiar with the modules available in PySpark and start using them effortlessly. In addition to this, you'll discover how to abstract data with RDDs and DataFrames, and understand the streaming capabilities of PySpark. You'll then move on to using ML and MLlib in order to solve any problems related to the machine learning capabilities of PySpark, and you'll use GraphFrames to solve graph-processing problems. Finally, you will explore how to deploy your applications to the cloud using the spark-submit command.

By the end of this book, you will be able to use the Python API for Apache Spark to solve any problems associated with building data-intensive applications.

lock icon The rest of the chapter is locked
Next Section arrow right
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image