Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Predictive Analytics

You're reading from   Practical Predictive Analytics Analyse current and historical data to predict future trends using R, Spark, and more

Arrow left icon
Product type Paperback
Published in Jun 2017
Publisher Packt
ISBN-13 9781785886188
Length 576 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ralph Winters Ralph Winters
Author Profile Icon Ralph Winters
Ralph Winters
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with Predictive Analytics FREE CHAPTER 2. The Modeling Process 3. Inputting and Exploring Data 4. Introduction to Regression Algorithms 5. Introduction to Decision Trees, Clustering, and SVM 6. Using Survival Analysis to Predict and Analyze Customer Churn 7. Using Market Basket Analysis as a Recommender Engine 8. Exploring Health Care Enrollment Data as a Time Series 9. Introduction to Spark Using R 10. Exploring Large Datasets Using Spark 11. Spark Machine Learning - Regression and Cluster Models 12. Spark Models – Rule-Based Learning

Cleaning up and caching the table in memory

Since Spark excels at processing in-memory data, we will first remove our intermediary data and then cache our out_sd dataframe, so that subsequent queries run much faster. Caching data in memory works best when similar types of queries are repeated. In that way, Spark is able to know how to juggle memory so that most of what you need resides in memory.

However, this is not foolproof. Good Spark query and table design will help with optimization, but out-of-the-box caching usually gives some benefit. Often, the first queries will not benefit from memory caching, but subsequent queries will run much faster.

Since we will no longer use the intermediary dataframes we created, we will remove them with the rm function, and then use the cache() function on the full dataframe:

#cleanup and cache df 
rm(out_sd1)
rm(out_sd2)
cache(out_sd)
...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime