Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Practical Guide to Applied Conformal Prediction in Python

You're reading from   Practical Guide to Applied Conformal Prediction in Python Learn and apply the best uncertainty frameworks to your industry applications

Arrow left icon
Product type Paperback
Published in Dec 2023
Publisher Packt
ISBN-13 9781805122760
Length 240 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Valery Manokhin Valery Manokhin
Author Profile Icon Valery Manokhin
Valery Manokhin
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Part 1: Introduction
2. Chapter 1: Introducing Conformal Prediction FREE CHAPTER 3. Chapter 2: Overview of Conformal Prediction 4. Part 2: Conformal Prediction Framework
5. Chapter 3: Fundamentals of Conformal Prediction 6. Chapter 4: Validity and Efficiency of Conformal Prediction 7. Chapter 5: Types of Conformal Predictors 8. Part 3: Applications of Conformal Prediction
9. Chapter 6: Conformal Prediction for Classification 10. Chapter 7: Conformal Prediction for Regression 11. Chapter 8: Conformal Prediction for Time Series and Forecasting 12. Chapter 9: Conformal Prediction for Computer Vision 13. Chapter 10: Conformal Prediction for Natural Language Processing 14. Part 4: Advanced Topics
15. Chapter 11: Handling Imbalanced Data 16. Chapter 12: Multi-Class Conformal Prediction 17. Index 18. Other Books You May Enjoy

Basic components of a conformal predictor

We will now look at the basic components of a conformal predictor:

  • Nonconformity measure: The nonconformity measure is a function that evaluates how much a new data point differs from the existing data points. It compares the new observation to either the entire dataset (in the full transductive version of conformal prediction) or the calibration set (in the most popular variant – ICP. The selection of the nonconformity measure is based on a particular machine learning task, such as classification, regression, or time series forecasting, as well as the underlying model. This chapter will examine several nonconformity measures suitable for classification and regression tasks.
  • Calibration set: The calibration set is a portion of the dataset used to calculate nonconformity scores for the known data points. These scores are a reference for establishing prediction intervals or regions for new test data points. The calibration...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime