Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Modern C++: Efficient and Scalable Application Development

You're reading from   Modern C++: Efficient and Scalable Application Development Leverage the modern features of C++ to overcome difficulties in various stages of application development

Arrow left icon
Product type Course
Published in Dec 2018
Publisher
ISBN-13 9781789951738
Length 702 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Marius Bancila Marius Bancila
Author Profile Icon Marius Bancila
Marius Bancila
Richard Grimes Richard Grimes
Author Profile Icon Richard Grimes
Richard Grimes
Arrow right icon
View More author details
Toc

Table of Contents (24) Chapters Close

Title Page
Copyright
About Packt
Contributors
Preface
1. Understanding Language Features FREE CHAPTER 2. Working with Memory, Arrays, and Pointers 3. Using Functions 4. Classes 5. Using the Standard Library Containers 6. Using Strings 7. Diagnostics and Debugging 8. Learning Modern Core Language Features 9. Working with Numbers and Strings 10. Exploring Functions 11. Standard Library Containers, Algorithms, and Iterators 12. Math Problems 13. Language Features 14. Strings and Regular Expressions 15. Streams and Filesystems 16. Date and Time 17. Algorithms and Data Structures 1. Other Books You May Enjoy Index

Writing classes


When you use built-in types, the data is directly available to whatever code has access to that data. C++ provides a mechanism (const) to prevent write access, but any code can use const_cast to cast away const-ness. Your data could be complex, such as a pointer to a file mapped into memory with the intention that your code will change a few bytes and then write the file back to disk. Such raw pointers are dangerous because other code with access to the pointer could change part of the buffer that should not be changed. What is needed is a mechanism to encapsulate the data into a type that knows what bytes to change, and only allow that type to access the data. This is the basic idea behind classes.

Reviewing structures

We have already seen one mechanism in C++ to encapsulate data: struct. A structure allows you to declare data members that are built-in types, pointers, or references. When you create a variable from that struct, you are creating an instance of the structure...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image