Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Mastering Python Forensics
Mastering Python Forensics

Mastering Python Forensics: Master the art of digital forensics and analysis with Python

eBook
Mex$179.99 Mex$738.99
Paperback
Mex$922.99
Subscription
Free Trial

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Table of content icon View table of contents Preview book icon Preview Book

Mastering Python Forensics

Chapter 1. Setting Up the Lab and Introduction to Python ctypes

Cyber Security and Digital Forensics are two topics of increasing importance. Digital forensics especially, is getting more and more important, not only during law enforcement investigations, but also in the field of incident response. During all of the previously mentioned investigations, it's fundamental to get to know the root cause of a security breach, malfunction of a system, or a crime. Digital forensics plays a major role in overcoming these challenges.

In this book, we will teach you how to build your own lab and perform profound digital forensic investigations, which originate from a large range of platforms and systems, with the help of Python. We will start with common Windows and Linux desktop machines, then move forward to cloud and virtualization platforms, and end up with mobile phones. We will not only show you how to examine the data at rest or in transit, but also take a deeper look at the volatile memory.

Python provides an excellent development platform to build your own investigative tools because of its decreased complexity, increased efficiency, large number of third-party libraries, and it's also easy to read and write. During the journey of reading this book, you will not only learn how to use the most common Python libraries and extensions to analyze the evidence, but also how to write your own scripts and helper tools to work faster on the cases or incidents with a huge amount of evidence that has to be analyzed.

Let's begin our journey of mastering Python forensics by setting up our lab environment, followed by a brief introduction of the Python ctypes.

If you have already worked with Python ctypes and have a working lab environment, feel free to skip the first chapter and start directly with one of the other chapters. After the first chapter, the other chapters are fairly independent of each other and can be read in any order.

Setting up the Lab

As a base for our scripts and investigations, we need a comprehensive and powerful lab environment that is able to handle a large number of different file types and structures as well as connections to mobile devices. To achieve this goal, we will use the latest Ubuntu LTS version 14.04.2 and install it in a virtual machine (VM). Within the following sections, we will explain the setup of the VM and introduce Python virtualenv, which we will use to establish our working environment.

Ubuntu

To work in a similar lab environment, we suggest you to download a copy of the latest Ubuntu LTS Desktop Distribution from http://www.ubuntu.com/download/desktop/, preferably the 32-bit version. The distribution provides a simple-to-use UI and already has the Python 2.7.6 environment installed and preconfigured. Throughout the book, we will use Python 2.7.x and not the newer 3.x versions. Several examples and case studies in this book will rely on the tools or libraries that are already a part of the Ubuntu distribution. When a chapter or section of the book requires a third-party package or library, we will provide the additional information on how to install it in the virtualenv (the setup of this environment will be explained in the next section) or on Ubuntu in general.

For better performance of the system, we recommend that the virtual machine that is used for the lab has at least 4 GB of volatile memory and about 40 GB of storage.

Ubuntu

Figure 1: The Atom editor

To write your first Python script, you can use a simple editor such as vi or a powerful but cluttered IDE such as eclipse. As a really powerful alternative, we would suggest you to use atom, a very clean but highly customizable editor that can be freely downloaded from https://atom.io/.

Python virtual environment (virtualenv)

According to the official Python documentation, Virtual Environment is a tool to keep the dependencies required by different projects in separate places by creating virtual Python environments for them. It solves the "Project X depends on version 1.x, but Project Y needs 4.x" dilemma and keeps your global site-packages directory clean and manageable.

This is also what we will use in the following chapters to keep a common environment for all the readers of the book and not run into any compatibility issues. First of all, we have to install the virtualenv package. This is done by the following command:

user@lab:~$ pip install virtualenv

We will now create a folder in the users' home directory for our virtual Python environment. This directory will contain the executable Python files and a copy of the pip library, which can be used to install other packages in the environment. The name of the virtual environment (in our case, it is called labenv) can be of your choice. Our virtual lab environment can be created by executing the following command:

user@lab:~$ virtualenv labenv
New python executable in labenv/bin/python
Installing setuptools, pip...done.

To start working with the new lab environment, it first needs to be activated. This can be done through:

user@lab:~$ source labenv/bin/activate
(labenv)user@lab:~$

Now, you can see that the command prompt starts with the name of the virtual environment that we activated. From now on, any package that you install using pip will be placed in the labenv folder, isolated from the global Python installation in the underlying Ubuntu.

Throughout the book, we will use this virtual python environment and install new packages and libraries in it from time to time. So, every time you try to recap a shown example remember or challenge to change into the labenv environment before running your scripts.

If you are done working in the virtual environment for the moment and you want to return to your "normal" Python environment, you can deactivate the virtual environment by executing the following command:

(labenv)user@lab:~$ deactivate
user@lab:~$

This puts you back in the system's default Python interpreter with all its installed libraries and dependencies.

If you are using more than one virtual or physical machine for the investigations, the virtual environments can help you to keep your libraries and packages synced with all these workplaces. In order to ensure that your environments are consistent, it's a good idea to "freeze" the current state of environment packages. To do this, just run:

(labenv)user@lab:~$ pip freeze > requirenments.txt

This will create a requirements.txt file, which contains a simple list of all the packages in the current environment and their respective versions. If you want to now install the same packages using the same version on a different machine, just copy the requirements.txt file to the desired machine, create the labenv environment as described earlier and execute the following command:

(labenv)user@lab:~$ pip install -r requirements.txt

Now, you will have consistent Python environments on all the machines and don't need to worry about different library versions or other dependencies.

After we have created the Ubuntu virtual machine with our dedicated lab environment, we are nearly ready to start our first forensic analysis. But before that, we need more knowledge of the helpful Python libraries and backgrounds. Therefore, we will start with an introduction to the Python ctypes in the following section.

Introduction to Python ctypes

According to the official Python documentation, ctypes is a foreign function library that provides C compatible data types and allows calling functions in DLLs or shared libraries. A foreign function library means that the Python code can call C functions using only Python, without requiring special or custom-made extensions.

This module is one of the most powerful libraries available to the Python developer. The ctypes library enables you to not only call functions in dynamically linked libraries (as described earlier), but can also be used for low-level memory manipulation. It is important that you understand the basics of how to use the ctypes library as it will be used for many examples and real-world cases throughout the book.

In the following sections, we will introduce some basic features of Python ctypes and how to use them.

Working with Dynamic Link Libraries

Python ctypes export the cdll and on Windows windll or respectively oledll objects, to load the requested dynamic link libraries. A dynamically linked library is a compiled binary that is linked at runtime to the executable main process. On Windows platforms, these binaries are called Dynamic Link Libraries (DLL) and on Linux, they are called shared objects (SO). You can load these linked libraries by accessing them as the attributes of the cdll, windll or oledll objects. Now, we will demonstrate a very brief example for Windows and Linux to get the current time directly out of the time function in libc (this library defines the system calls and other basic facilities such as open, printf, or exit).

Note that in the case of Windows, msvcrt is the MS standard C library containing most of the standard C functions and uses the cdecl calling convention (on Linux systems, the similar library would be libc.so.6):

C:\Users\Admin>python

>>> from ctypes import *
>>> libc = cdll.msvcrt
>>> print libc.time(None)
1428180920

Windows appends the usual .dll file suffix automatically. On Linux, it is required to specify the filename, including the extension, to load the chosen library. Either the LoadLibrary() method of the DLL loaders should be used or you should load the library by creating an instance of CDLL by calling the constructor, as shown in the following code:

(labenv)user@lab:~$ python

>>> from ctypes import *
>>> libc = CDLL("libc.so.6")
>>> print libc.time(None)
1428180920

As shown in these two examples, it is very easy to be able to call to a dynamic library and use a function that is exported. You will be using this technique many times throughout the book, so it is important that you understand how it works.

C data types

When looking at the two examples from the earlier section in detail, you can see that we use None as one of the parameters for a dynamically linked C library. This is possible because None, integers, longs, byte strings, and unicode strings are the native Python objects that can be directly used as the parameters in these function calls. None is passed as a C, NULL pointer, byte strings, and unicode strings are passed as pointers to the memory block that contains their data (char * or wchar_t *). Python integers and Python longs are passed as the platform's default C int type, their value is masked to fit into the C type. A complete overview of the Python types and their corresponding ctype types can be seen in Table 1:

ctypes type

C type

Python type

c_bool (https://docs.python.org/2/library/ctypes.html#ctypes.c_bool)

_Bool

bool (1)

c_char (https://docs.python.org/2/library/ctypes.html#ctypes.c_char)

char

1-character string

c_wchar (https://docs.python.org/2/library/ctypes.html#ctypes.c_wchar)

wchar_t

1-character unicode string

c_byte (https://docs.python.org/2/library/ctypes.html#ctypes.c_byte)

char

int/long

c_ubyte (https://docs.python.org/2/library/ctypes.html#ctypes.c_ubyte)

unsigned char

int/long

c_short (https://docs.python.org/2/library/ctypes.html#ctypes.c_short)

short

int/long

c_ushort (https://docs.python.org/2/library/ctypes.html#ctypes.c_ushort)

unsigned short

int/long

c_int (https://docs.python.org/2/library/ctypes.html#ctypes.c_int)

int

int/long

c_uint (https://docs.python.org/2/library/ctypes.html#ctypes.c_uint)

unsigned int

int/long

c_long (https://docs.python.org/2/library/ctypes.html#ctypes.c_long)

long

int/long

c_ulong (https://docs.python.org/2/library/ctypes.html#ctypes.c_ulong)

unsigned long

int/long

c_longlong (https://docs.python.org/2/library/ctypes.html#ctypes.c_longlong)

__int64 or long long

int/long

c_ulonglong (https://docs.python.org/2/library/ctypes.html#ctypes.c_ulonglong)

unsigned __int64 or unsigned long long

int/long

c_float (https://docs.python.org/2/library/ctypes.html#ctypes.c_float)

float

float

c_double (https://docs.python.org/2/library/ctypes.html#ctypes.c_double)

double

float

c_longdouble (https://docs.python.org/2/library/ctypes.html#ctypes.c_longdouble)

long double

float

c_char_p (https://docs.python.org/2/library/ctypes.html#ctypes.c_char_p)

char * (NUL terminated)

string or None

c_wchar_p (https://docs.python.org/2/library/ctypes.html#ctypes.c_wchar_p)

wchar_t * (NUL terminated)

unicode or None

c_void_p (https://docs.python.org/2/library/ctypes.html#ctypes.c_void_p)

void *

int/long or None

Table 1: Fundamental Data Types

This table is very helpful because all the Python types except integers, strings, and unicode strings have to be wrapped in their corresponding ctypes type so that they can be converted to the required C data type in the linked library and not throw the TypeError exceptions, as shown in the following code:

(labenv)user@lab:~$ python

>>> from ctypes import *
>>> libc = CDLL("libc.so.6")
>>> printf = libc.printf

>>> printf("An int %d, a double %f\n", 4711, 47.11)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ctypes.ArgumentError: argument 3: <type 'exceptions.TypeError'>: Don't know how to convert parameter 3

>>> printf("An int %d, a double %f\n", 4711, c_double(47.11))
An int 4711, a double 47.110000

Defining Unions and Structures

Unions and Structures are important data types because they are frequently used throughout the libc on Linux and also in the Microsoft Win32 API.

Unions are simply a group of variables, which can be of the same or different data types, where all of its members share the same memory location. By storing variables in this way, unions allow you to specify the same value in different types. For the upcoming example, we will change from the interactive Python shell to the atom editor on our Ubuntu lab environment. You just need to open atom editor, type in the following code, and save it under the name new_evidence.py:

from ctypes import *

class case(Union):
        _fields_ = [
        ("evidence_int", c_int),
        ("evidence_long", c_long),
        ("evidence_char", c_char * 4)
        ]

value = raw_input("Enter new evidence number:")
new_evidence = case(int(value))
print "Evidence number as a int: %i" % new_evidence.evidence_int
print "Evidence number as a long: %ld" % new_evidence.evidence_long
print "Evidence number as a char: %s" % new_evidence.evidence_char

If you assign the evidence union's member variable evidence_int a value of 42, you can then use the evidence_char member to display the character representation of that number, as shown in the following example:

(labenv)user@lab:~$ python new_evidence.py

Enter new evidence number:42

Evidence number as a long: 42
Evidence number as a int: 42
Evidence number as a char: *

As you can see in the preceding example, by assigning the union a single value, you get three different representations of that value. For int and long, the displayed output is obvious but for the evidence_char variable, it could be a bit confusing. In this case, '*' is the ASCII character with the value of the equivalent of decimal 42. The evidence_char member variable is a good example of how to define an array in ctypes. In ctypes, an array is defined by multiplying a type by the number of elements that you want to allocate in the array. In this example, a four-element character array was defined for the member variable evidence_char.

A structure is very similar to unions, but the members do not share the same memory location. You can access any of the member variables in the structure using dot notation, such as case.name. This would access the name variable contained in the case structure. The following is a very brief example of how to create a structure (or struct, as they are often called) with three members: name, number, and investigator_name so that all can be accessed by the dot notation:

from ctypes import *

class case(Structure):
        _fields_ = [
        ("name", c_char * 16),
        ("number", c_int),
        ("investigator_name", c_char * 8)
        ]

Tip

Downloading the example code

You can download the example code files from your account at http://www.packtpub.com for all the Packt Publishing books you have purchased. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Summary

In the first chapter, we created our lab environment: a virtual machine running Ubuntu 14.04.2 LTS. This step is really important as you can now create snapshots before working on real evidence and are able to roll back to a clean machine state after finishing the investigation. This can be helpful, especially, when working with compromised system backups, where you want to be sure that your system is clean when working on a different case afterwards.

In the second part of this chapter, we demonstrated how to work with Python's virtual environments (virtualenv) that will be used and extended throughout the book.

In the last section of this chapter, we introduced the Python ctypes to you, which is a very powerful library available to the Python developer. With those ctypes, you are not only able to call functions in the dynamically linked libraries (available Microsoft Win32 APIs or common Linux shared objects), but they can also be used for low-level memory manipulation.

After completing this chapter, you will have a basic environment created to be used for the rest of the book, and you will also understand the fundamentals of Python ctypes that will be helpful in some of the following chapters.

Left arrow icon Right arrow icon

Key benefits

  • Learn to perform forensic analysis and investigations with the help of Python, and gain an advanced understanding of the various Python libraries and frameworks
  • Analyze Python scripts to extract metadata and investigate forensic artifacts
  • The writers, Dr. Michael Spreitzenbarth and Dr. Johann Uhrmann, have used their experience to craft this hands-on guide to using Python for forensic analysis and investigations

Description

Digital forensic analysis is the process of examining and extracting data digitally and examining it. Python has the combination of power, expressiveness, and ease of use that makes it an essential complementary tool to the traditional, off-the-shelf digital forensic tools. This book will teach you how to perform forensic analysis and investigations by exploring the capabilities of various Python libraries. The book starts by explaining the building blocks of the Python programming language, especially ctypes in-depth, along with how to automate typical tasks in file system analysis, common correlation tasks to discover anomalies, as well as templates for investigations. Next, we’ll show you cryptographic algorithms that can be used during forensic investigations to check for known files or to compare suspicious files with online services such as VirusTotal or Mobile-Sandbox. Moving on, you’ll learn how to sniff on the network, generate and analyze network flows, and perform log correlation with the help of Python scripts and tools. You’ll get to know about the concepts of virtualization and how virtualization influences IT forensics, and you’ll discover how to perform forensic analysis of a jailbroken/rooted mobile device that is based on iOS or Android. Finally, the book teaches you how to analyze volatile memory and search for known malware samples based on YARA rules.

Who is this book for?

If you are a network security professional or forensics analyst who wants to gain a deeper understanding of performing forensic analysis with Python, then this book is for you. Some Python experience would be helpful.

What you will learn

  • Explore the forensic analysis of different platforms such as Windows, Android, and vSphere
  • Semi-automatically reconstruct major parts of the system activity and time-line
  • Leverage Python ctypes for protocol decoding
  • Examine artifacts from mobile, Skype, and browsers
  • Discover how to utilize Python to improve the focus of your analysis
  • Investigate in volatile memory with the help of volatility on the Android and Linux platforms

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Oct 30, 2015
Length: 192 pages
Edition : 1st
Language : English
ISBN-13 : 9781783988051
Category :
Languages :
Concepts :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Product Details

Publication date : Oct 30, 2015
Length: 192 pages
Edition : 1st
Language : English
ISBN-13 : 9781783988051
Category :
Languages :
Concepts :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just Mex$85 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just Mex$85 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total Mex$ 3,180.97
Mastering Python Forensics
Mex$922.99
Learning Penetration Testing with Python
Mex$1128.99
Learning Network Forensics
Mex$1128.99
Total Mex$ 3,180.97 Stars icon
Banner background image

Table of Contents

8 Chapters
1. Setting Up the Lab and Introduction to Python ctypes Chevron down icon Chevron up icon
2. Forensic Algorithms Chevron down icon Chevron up icon
3. Using Python for Windows and Linux Forensics Chevron down icon Chevron up icon
4. Using Python for Network Forensics Chevron down icon Chevron up icon
5. Using Python for Virtualization Forensics Chevron down icon Chevron up icon
6. Using Python for Mobile Forensics Chevron down icon Chevron up icon
7. Using Python for Memory Forensics Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.4
(7 Ratings)
5 star 71.4%
4 star 0%
3 star 28.6%
2 star 0%
1 star 0%
Filter icon Filter
Top Reviews

Filter reviews by




Yves Vandermeer Dec 14, 2015
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I enjoyed to link the topics covered using fully python scripting oriented approach developed in this book.However, you already need to have experience in computer forensics and understand main concepts to be able to implement provided methods. Python learning curve is outstanding fast and most of the readers will be able to address common forensics, including mobile forensics cases by only applying provided scripts and referenced libraries.As for all python books, tutorials and available code, the reader will have to, when feeling confortable with provided code, adapt the code to his own needs. Now that The Sleuthkit provides python modules, and with help of the covered C-types, forensics practitioners will have a real added value toolset to solve ad-hoc challenges.
Amazon Verified review Amazon
Denver Water - Dawson Mar 04, 2016
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Wonderful published book. Great vendor!!
Amazon Verified review Amazon
ruben Dec 26, 2015
Full star icon Full star icon Full star icon Full star icon Full star icon 5
The book starts by explaining the building blocks of the Python programming language, especially ctypes in-depth, along with how to automate typical tasks in file system analysis, common correlation tasks to discover anomalies, as well as templates for investigations. Next, we’ll show you cryptographic algorithms that can be used during forensic investigations to check for known files or to compare suspicious files with online services such as VirusTotal or Mobile-Sandbox.I have seen this book very interesting, and never seens it before, with this title helprs to comprenhen the main thing this Python Forensics.We can develop many things with this kind of information that I can have with this book. in may area I can apply these all kind of topics in networking areas.Ruben.
Amazon Verified review Amazon
SuJo Dec 25, 2015
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book covers a lot of various topics when it comes to forensics, most importantly it covers mobile forensics which is something that is going to increase over time as phones become more robust. I'm very happy with the purchase and right now packt has a $5 book sale on all of their titles which makes it a no brainier, so head over to their main site for your purchase if you're buying this book right now. My favorite part about the book was sniffing network traffic, and I felt the YARA rules were covered quite well.While I agree with other reviews that you'll not master everything related to Python Forensics; however you will have a solid understanding and foundation to build upon.
Amazon Verified review Amazon
Perry Nally Dec 27, 2015
Full star icon Full star icon Full star icon Full star icon Full star icon 5
If you need to know details about processes and how to extract data from hard drives or mobile devices this is the book for you. Though the Android tutorial uses Android 4.4.4 you can still use the walk through using the latest version. This is a useful book with a lot of great information and python scripts. He also tells you how to setup you environment in order to perform the data acquisitions and analysis to obtain sensitive data. Everyone dealing in digital forensics should read this book and have it as a reference manual. Great job!
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.