KNN is a lazy learner. Also known as instance-based learners, lazy learners simply store the training dataset with little or no processing. In contrast to eager learners such as simple linear regression, KNN does not estimate the parameters of a model that generalizes the training data during a training phase. Lazy learning has advantages and disadvantages. Training an eager learner is often computationally costly, but prediction with the resulting model is often inexpensive. For simple linear regression, prediction consists only of multiplying the learned coefficient by the feature, and adding the learned intercept parameter. A lazy learner can predict almost immediately, but making predictions can be costly. In the simplest implementation of KNN, prediction requires calculating the distances between a test instance and all training instances...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand