Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Machine Learning with R, Second Edition

You're reading from   Mastering Machine Learning with R, Second Edition Advanced prediction, algorithms, and learning methods with R 3.x

Arrow left icon
Product type Paperback
Published in Apr 2017
Publisher Packt
ISBN-13 9781787287471
Length 420 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Cory Lesmeister Cory Lesmeister
Author Profile Icon Cory Lesmeister
Cory Lesmeister
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. A Process for Success 2. Linear Regression - The Blocking and Tackling of Machine Learning FREE CHAPTER 3. Logistic Regression and Discriminant Analysis 4. Advanced Feature Selection in Linear Models 5. More Classification Techniques - K-Nearest Neighbors and Support Vector Machines 6. Classification and Regression Trees 7. Neural Networks and Deep Learning 8. Cluster Analysis 9. Principal Components Analysis 10. Market Basket Analysis, Recommendation Engines, and Sequential Analysis 11. Creating Ensembles and Multiclass Classification 12. Time Series and Causality 13. Text Mining 14. R on the Cloud 15. R Fundamentals 16. Sources

Business understanding and recommendations


This business case is a joke, literally. Maybe it is more appropriate to say a bunch of jokes, as we will use the Jester5k data from the recommenderlab package. This data consists of 5,000 ratings on 100 jokes sampled from the Jester Online Joke Recommender System. It was collected between April 1999 and May 2003, and all the users have rated at least 36 jokes (Goldberg, Roeder, Gupta, and Perkins, 2001). Our goal is to compare the recommendation algorithms and select the best one.

As such, I believe it is important to lead off with a statistical joke to put one in the proper frame of mind. I'm not sure of how to properly provide attribution for this one, but it is popular all over the Internet.

A statistician's wife had twins. He was delighted. He rang the minister who was also delighted. "Bring them to church on Sunday and we'll baptize them", said the minister. "No", replied the statistician. "Baptize one. We'll keep the other as a control."

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image