Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Concurrency Programming with Java 8

You're reading from   Mastering Concurrency Programming with Java 8 Master the principles and techniques of multithreaded programming with the Java 8 Concurrency API

Arrow left icon
Product type Paperback
Published in Feb 2016
Publisher Packt
ISBN-13 9781785886126
Length 430 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Javier Fernández González Javier Fernández González
Author Profile Icon Javier Fernández González
Javier Fernández González
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. The First Step – Concurrency Design Principles FREE CHAPTER 2. Managing Lots of Threads – Executors 3. Getting the Maximum from Executors 4. Getting Data from the Tasks – The Callable and Future Interfaces 5. Running Tasks Divided into Phases – The Phaser Class 6. Optimizing Divide and Conquer Solutions – The Fork/Join Framework 7. Processing Massive Datasets with Parallel Streams – The Map and Reduce Model 8. Processing Massive Datasets with Parallel Streams – The Map and Collect Model 9. Diving into Concurrent Data Structures and Synchronization Utilities 10. Integration of Fragments and Implementation of Alternatives 11. Testing and Monitoring Concurrent Applications Index

An example of a document clustering application

This application will read a set of documents and will organize them using the k-means clustering algorithms. To achieve this, we will use four components:

  • The Reader system: This system will read all the documents and convert every document into a list of String objects.
  • The Indexer system: This system will process the documents and convert them into a list of words. At the same time, it will generate the global vocabulary of the set of documents with all the words that appear on them.
  • The Mapper system: This system will convert each list of words into a mathematical representation using the vector space model. The value of each item will be the Tf-Idf (short for term frequency–inverse document frequency) metric.
  • The Clustering system: This system will use the k-means clustering algorithm to cluster the documents.

All these systems are concurrent and use their own tasks to implement their functionality. Let's see how you can implement...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image