Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Clojure Data Analysis

You're reading from   Mastering Clojure Data Analysis If you'd like to apply your Clojure skills to performing data analysis, this is the book for you. The example based approach aids fast learning and covers basic to advanced topics. Get deeper into your data.

Arrow left icon
Product type Paperback
Published in May 2014
Publisher
ISBN-13 9781783284139
Length 340 pages
Edition Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Eric Richard Rochester Eric Richard Rochester
Author Profile Icon Eric Richard Rochester
Eric Richard Rochester
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Mastering Clojure Data Analysis
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
1. Network Analysis – The Six Degrees of Kevin Bacon FREE CHAPTER 2. GIS Analysis – Mapping Climate Change 3. Topic Modeling – Changing Concerns in the State of the Union Addresses 4. Classifying UFO Sightings 5. Benford's Law – Detecting Natural Progressions of Numbers 6. Sentiment Analysis – Categorizing Hotel Reviews 7. Null Hypothesis Tests – Analyzing Crime Data 8. A/B Testing – Statistical Experiments for the Web 9. Analyzing Social Data Participation 10. Modeling Stock Data Index

Examining the results


First, let's examine the precision of the classifiers. Remember that the precision is how well the classifiers do at only returning positive reviews. This indicates the percentage of reviews that each classifier has identified as being positive is actually positive in the test set:

We need to remember a couple of things while looking at this graph. First, sentiment analysis is difficult, compared to other categorization tasks. Most importantly, human raters only agree about 80 percent of the time. So, the bar seen in the preceding figure that almost reaches 65 percent is actually decent, if not great. Still, we can see that the naive Bayesian classifier generally outperforms the maxent one for this dataset, especially when using unigram features. It performed less well for the bigram and trigram features, and slightly lesser for the POS-tagged unigrams.

We didn't try tagging the bigram and trigrams with POS information, but that might have been an interesting experiment...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image