Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning for OpenCV

You're reading from   Machine Learning for OpenCV Intelligent image processing with Python

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781783980284
Length 382 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Michael Beyeler Michael Beyeler
Author Profile Icon Michael Beyeler
Michael Beyeler
Michael Beyeler (USD) Michael Beyeler (USD)
Author Profile Icon Michael Beyeler (USD)
Michael Beyeler (USD)
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. A Taste of Machine Learning FREE CHAPTER 2. Working with Data in OpenCV and Python 3. First Steps in Supervised Learning 4. Representing Data and Engineering Features 5. Using Decision Trees to Make a Medical Diagnosis 6. Detecting Pedestrians with Support Vector Machines 7. Implementing a Spam Filter with Bayesian Learning 8. Discovering Hidden Structures with Unsupervised Learning 9. Using Deep Learning to Classify Handwritten Digits 10. Combining Different Algorithms into an Ensemble 11. Selecting the Right Model with Hyperparameter Tuning 12. Wrapping Up

Problems that machine learning can solve

Most machine learning problems belong to one of the following three main categories:

  • In supervised learning, each data point is labeled or associated with a category or value of interest (Chapter 3, First Steps in Supervised Learning). An example of a categorical label is assigning an image as either a cat or dog. An example of a value label is the sale price associated with a used car. The goal of supervised learning is to study many labeled examples like these (called training data) in order to make predictions about future data points (called test data). These predictions come in two flavors, such as identifying new photos with the correct animal (called a classification problem) or assigning accurate sale prices to other used cars (called a regression problem). Don't worry if this seems a little over your head for now--we will have the entirety of the book to nail down the details.
  • In unsupervised learning, data points have no labels associated with them (Chapter 8, Discovering Hidden Structures with Unsupervised Learning). Instead, the goal of an unsupervised learning algorithm is to organize the data in some way or to describe its structure. This can mean grouping them into clusters or finding different ways of looking at complex data so that they appear simpler.
  • In reinforcement learning, the algorithm gets to choose an action in response to each data point. It is a common approach in robotics, where the set of sensor readings at one point in time is a data point and the algorithm must choose the robot's next action. It's also a natural fit for Internet of Things applications, where the learning algorithm receives a reward signal at a short time into the future, indicating how good the decision was. Based on this, the algorithm modifies its strategy in order to achieve the highest reward.

These three main categories are illustrated in the following figure:

Main machine learning categories
You have been reading a chapter from
Machine Learning for OpenCV
Published in: Jul 2017
Publisher: Packt
ISBN-13: 9781783980284
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image