Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Machine Learning at Scale with H2O
Machine Learning at Scale with H2O

Machine Learning at Scale with H2O: A practical guide to building and deploying machine learning models on enterprise systems

Arrow left icon
Profile Icon Gregory Keys Profile Icon David Whiting
Arrow right icon
Mex$861.99
Full star icon Full star icon Full star icon Full star icon Full star icon 5 (2 Ratings)
Paperback Jul 2022 396 pages 1st Edition
eBook
Mex$179.99 Mex$689.99
Paperback
Mex$861.99
Subscription
Free Trial
Arrow left icon
Profile Icon Gregory Keys Profile Icon David Whiting
Arrow right icon
Mex$861.99
Full star icon Full star icon Full star icon Full star icon Full star icon 5 (2 Ratings)
Paperback Jul 2022 396 pages 1st Edition
eBook
Mex$179.99 Mex$689.99
Paperback
Mex$861.99
Subscription
Free Trial
eBook
Mex$179.99 Mex$689.99
Paperback
Mex$861.99
Subscription
Free Trial

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Table of content icon View table of contents Preview book icon Preview Book

Machine Learning at Scale with H2O

Chapter 1: Opportunities and Challenges

Machine Learning (ML) and data science are winning a popularity contest of sorts, as witnessed by their headline coverage in the popular and professional press and by expanding job openings across the technology landscape. Students typically learn ML techniques using their own computers on relatively small datasets. Those who enter the field often find themselves in the much different setting of a large company buzzing with workers performing specialized job roles, while collaborating with others scattered across the nation or world. Both data science students and data science workers have a few key things in common – they are in an exciting and growing field that businesses deem ever more critical to their future, and the data they thrive on is becoming exponentially more abundant and diverse.

There are huge opportunities for ML in enterprises because the transformational impacts of ML on businesses, customers, patients, and so on are diverse, widespread, lucrative, and life-changing. A backdrop of urgency exists as well from competitors who are all attempting the same thing. Enterprises are thus incented to invest in significant ML transformations and to supply the necessary data, tooling, production systems, and people to journey toward ML success. But challenges loom large as well, and these challenges commonly revolve around scale. The challenges of scale take on many forms inherent to ML at an enterprise level.

In this chapter, we will define and explore the challenge of ML at scale by covering the following main topics:

  • ML at scale
  • The ML life cycle and three challenge areas for ML at scale
  • H2O.ai's answer to these challenges

ML at scale

This book is about implementing ML at scale and how to use H2O.ai technology to succeed in doing so. What specifically do we mean by ML at scale? We can see three contexts and challenges of scale during the ML life cycle – building models from large datasets, deploying these models in enterprise production environments, and executing the full range of ML activities within the complexities of enterprise processes and stakeholders. This is summarized in the following figure:

Figure 1.1 – The challenges of ML at scale

Figure 1.1 – The challenges of ML at scale

Let's drill down further on these challenges. Before doing so, we will oversee a generic conception of the ML life cycle, which will be useful as a reference throughout the book.

The ML life cycle and three challenge areas for ML at scale

The ML life cycle is a process that data scientists and enterprise stakeholders follow to build ML models and put them into production environments, where they make predictions and achieve value. In this section, we will define a simplified ML life cycle and elaborate on two broad areas that present special challenges for ML at scale.

A simplified ML life cycle

We will use the following ML life cycle representation. The goal is to achieve a simplified depiction that we can all recognize as central to ML while avoiding attempts at a canonical definition. Let's use it as our working framework for discussion:

Figure 1.2 – A simplified ML life cycle

Figure 1.2 – A simplified ML life cycle

The following is a brief articulation.

Model building

Model building is a highly iterative process with frequent and unpredictable feedback loops along the way toward building a predictive model that is worthy of deploying in a business context. The steps can be summarized as follows:

  • Data ingestion: Data is pulled from sources or a storage layer in the model building environment. There is often significant work onward from here in finding and accessing potentially useful data sources and transforming the data into a useable form. Typically, this is done as part of a larger data pipeline and architecture.
  • Data exploration: Data is explored to understand its qualities (for example, data profiling, correlation analysis, outlier detection, and data visualization).
  • Data manipulation: Data is cleaned (for example, the imputation of missing data, the reduction of categorical features, and normalization) and new features are engineered. 
  • Model training: An ML algorithm, scoring metric, and validation method are selected, and the model is tuned across a range of hyperparameters and tested against a test dataset.
  • Model evaluation and explainability: A fit of the model is diagnosed for performance metrics, overfitting, and other diagnostics; model explainability is used to validate against domain knowledge, to explain the model decisions at individual and global levels, and to guard against institutional risks such as unfair bias against demographic groups. 
  • Model deployment: The model is deployed as a scoring artifact to a software system and live scoring is made.
  • Model monitoring: The model is monitored to detect whether the data fed into it changes over time compared to the distribution of data it was trained on. This is called data drift and usually leads to the decreased predictive power of the model. This usually triggers the need to retrain the model with a more current dataset and then redeploy the updated model. The model may also be monitored for other patterns, such as whether it is biasing decisions against a particular demographic group and whether malicious attacks are being made to try to cause the model to malfunction.

As mentioned, a key property in the workflow is the unknown number and sequence of iteration pathways taken between these steps before a model is deployed or before the project is deemed unsuccessful in reaching that stage.

The model building challenge – state-of-the-art models at scale

Let's, for now, define a large dataset as any dataset that exceeds your ability to build ML models on your laptop or local workstation. It may be too large because your libraries simply crash or because they take an unreasonable amount of time to complete. This may occur during model training or during data ingestion, exploration, and manipulation.

We can see four separate challenges of building ML models from large data volumes, with each contributing to a larger problem in general that we call the friction of iteration. This is represented in the following diagram:

Figure 1.3 – The challenge of model building with large data volumes

Figure 1.3 – The challenge of model building with large data volumes

Let's elaborate on this.

Challenge one – data size and location

Enterprises collect and store vast amounts of diverse data and that is a boon to the data scientist looking to build accurate models. These datasets are either stored across many systems or centralized in a common storage layer (data lake) such as the Hadoop Distributed File System (HDFS) or AWS S3. Architecting and making data available to internal consumers is a major effort and challenge for an enterprise. However, the data scientist starting the ML life cycle with large datasets typically cannot move that data, once it becomes accessible, to a local environment due to either security reasons or high volume of data.. The consequence is that the data scientist must either do one of the following:

  • Move operations on the data (in other words, move the compute) to the data itself.
  • Move data to a high-compute environment that they are authorized to use.

Challenge two – data size and data manipulation

Manipulating data can be compute-intensive, and attempting to do so against insufficient resources either will cause the compute to fail (for example, the script, library, or tool will crash) or take an unreasonably long amount of time. Who wants to wait 10 hours to join and filter table data when it can be done in 10 minutes? What you might consider an unreasonable amount of time is obviously relative to the dataset size; terabytes of data will always take longer to process than a few megabytes. Regardless, the speed of your data processing is critical to reducing the sum time of your iterations.

Challenge three – data size and data exploration

Challenges of data size during data exploration are identical to those during data manipulation. The data may be so large that your processing crashes or takes an unreasonable amount of time to complete while exploring models.

Challenge four – data size and model training

ML algorithms are extremely compute-intensive because they step through each record of a dataset and perform complex calculations each time, and then iterate these calculations against the dataset repeatedly to optimize toward a training metric and thus learn a predictive mathematical pattern among the noise. Our compute environment is particularly pressured during model training.

Up until now, we have been discussing dataset size in relative terms; that is, large data volumes are those that cause operations on them to either fail or take a long time to complete in a given compute environment. 

In absolute terms, data scientists often explore the largest dataset possible to understand it and then sample it for model training. Others always try to use the largest dataset for model training. However, accurate models can be built from 10 GB or less of sampled or unsampled data.

The key to proper use of sampling is that you have followed appropriate statistical and theoretical practices, and not that you are forced to do so because your ML processing will crash or take a long time to complete due to large data volumes. The latter is a bad practice that produces inferior models and H2O.ai overcomes this by allowing model building with massive data volumes.

There are also cases when data sampling may not lead to an acceptable model. In other words, the data scientist may need hundreds of gigabytes or a terabyte or more of data to build a valuable model. These are cases when the following applies:

  • The data scientist does not trust the sampling to produce the best model and feels that each small gain in lift warrants the use of the full dataset.
  • The data scientist does not want to segment the data into separate datasets and thus separate model building exercises, or the larger stakeholder group wants a single model in production that predicts against all segments versus many that each predicts against a single segment.
  • The data is highly dimensional, sparse, or both. In this case, a large number of records are needed to reduce variance and overfitting to a training dataset. This type of dataset is typical for anomaly detection, recommendation engines, predictive maintenance, security threat detection, personalized medicine, and so on. It is worth noting that the future will bring us more and more data, and thus highly dimensional and sparse datasets will become more common.
  • The data is extremely imbalanced. The target variable is very rare in the dataset and a massive dataset is needed to avoid underfitting, overfitting, or weighting the target variable from these infrequent records.
  • The data is highly volatile. Each subset of data that is collected is unrepresentative of the others and thus sampling or cross-validation folds may not be representative. Time series forecasting may be particularly sensitive to this problem, especially when forecast categories are highly granular (for example, yearly, monthly, daily, and hourly) against a single validation dataset.

The friction of iteration

Model building is a highly iterative process and anything that slows it down we call the friction of iteration. These causes can be due to the challenges of working with large data volumes, as previously discussed. They can also arise from simple workflow patterns such as switching among systems between each iteration or launching new environments to work on an iteration.

Any slowness during a single iteration may seem acceptable but when multiplied across the seemingly endless iterations from the project beginning to failure or success, the cost in time from this friction becomes significant, and reducing friction can be valuable. As we will see in the next section, slow model building delays the main goal of ML in an enterprise – achieving business value.

The business challenge – getting your models into enterprise production systems

The bare truth about ML initiatives is that they do not really achieve value until they are deployed to a live scoring environment. Models must meet evaluation criteria and be put into production to be deemed successful. Until that happens, from a business standpoint, little is achieved. This may seem a bit harsh, but it is typically how success is defined in data science initiatives. The following diagram maps this thinking onto the ML life cycle:

Figure 1.4 – The ML life cycle value chain

Figure 1.4 – The ML life cycle value chain

The friction of iteration from this view is thus a cost. Time taken to iterate through model building is time taken from getting business results. In other words, lower friction translates to less time to build and deploy a model to achieve business value, and more time to work on other problems and thus more models per quarter or year.

From the same point of view, time to deploy a model is viewed as a cost for similar reasons. The model deployment step may seem like a simple one-step sequence of transitioning the model to DevOps, but typically it is not. Anything that makes a model easier and more repeatable to deploy, document, and govern helps businesses achieve value sooner.

Let's now continue expanding on a larger landscape of enterprise stakeholders that data scientists must work with to build models that ultimately achieve business value.

The navigation challenge – navigating the enterprise stakeholder landscape

The data scientist in any enterprise does not work in isolation. There are multiple stakeholders who become involved directly in the ML life cycle or, more broadly, in the business cycle of initiating and consuming ML projects. Who might some of these stakeholders be? At a bare minimum, they include the business stakeholder who funded the ML project, the administrator providing the data scientist with permissions and capabilities, the DevOps or engineering team members who are responsible for model deployment and the infrastructure supporting it, perhaps marketing or sales associates whose functions are impacted directly by the model, and any other representatives of the internal or external consumers of the model. In more heavily regulated industries such as banking, insurance, or pharmaceuticals, these might include representatives or offices of various audit and risk functions – data risk, code risk, model risk, legal risk, reputational risk, compliance, external regulators, and so on. The following figure shows a general view:

Figure 1.5 – Data scientists working with enterprise stakeholders and processes

Figure 1.5 – Data scientists working with enterprise stakeholders and processes

Stakeholder interaction is thus complex. What leads to this complexity? Obviously, the specialization and siloing of job functions make things complex, and this is further amplified by the scale of the enterprise. A larger dynamic of creating repeatable processes and minimizing risk contributes as well. Explaining this complexity is the task of a different book, but its reality in the enterprise is inescapable. To a data scientist, the ability to recognize, influence, negotiate with, deliver to, and ultimately build trust with these various stakeholders is imperative to successful ML solutions at scale. 

Now that we have understood the ML life cycle and the challenges inherent in its successful execution at scale, it is time for a brief introduction to how H2O.ai solves these challenges.

H2O.ai's answer to these challenges

H2O.ai provides software to build ML models at scale and overcome the challenges of doing so – model building at scale, model deployment at scale, and dealing with enterprise stakeholders' concerns and inherent friction along the way. These components are described in brief in the following diagram:

Figure 1.6 – H2O ML at scale

Figure 1.6 – H2O ML at scale

Subsequent chapters of this book elaborate on how these components are used to build and deploy state-of-the-art models within the complexities of the enterprise environment.

Let's try to understand these components at first glance:

  • H2O Core: This is open source software that distributes state-of-the-art ML algorithms and data manipulations over a specified number of servers on Kubernetes, Hadoop, or Spark environments. Data is partitioned in memory across the designated number of servers and ML algorithm computation is run in parallel using it.

This architecture creates horizontal scalability of model building to hundreds of gigabytes or terabytes of data and generally fast processing times at lower data volumes. Data scientists work with familiar IDEs, languages, and algorithms and are abstracted away from the underlying architecture. Thus, for example, a data scientist can run an XGBoost model in Python from a Jupyter notebook against 500 GB of data in Hadoop, similar to doing so with data loaded into their laptop.

H2O Core is often referred to as H2O Open Source and comes in two forms, H2O-3 and Sparkling Water, which we will elaborate on in subsequent chapters. H2O Core can be run as a scaled-down sandbox on a single server or laptop.

  • H2O Enterprise Steam: This is a web UI or API for data scientists to self-provision and manage their individual H2O Core environments. Self-provisioning includes auto-calculation of horizontal scaling based on user inputs that describe the data. Enterprise Steam is also used by administrators to manage users, including defining boundaries for their resource consumption, and to configure H2O Core integration against Hadoop, Spark, or Kubernetes.
  • H2O MOJO: This is an easy-to-deploy scoring artifact exportable from models built from H2O Core. MOJOs are low latency (typically < 100 ms or faster) Java binaries that can run on any Java Virtual Machine (JVM) and thus serve predictions on diverse software systems, such as REST servers, database clients, Amazon SageMaker, Kafka queues, Spark pipelines, Hive user-defined functions (UDFs), and Internet of Things (IoT) devices.
  • APIs: Each component has a rich set of APIs so that you can automate workflows, including continuous integration and continuous delivery (CI/CD) and retraining pipelines.

The focus of this book is on building and deploying state-of-the-art models at scale using H2O Core with help from Enterprise Steam and deploying those models as MOJOs within the complexities of enterprise environments.

H2O at Scale and H2O AI Cloud

We refer to H2O at scale in this book as H2O Enterprise Steam, H2O Core, and H2O Mojo because it addresses the ML at scale challenges described earlier in this chapter, especially through the distributed ML scalability that H2O Core provides for model building.

Note that H2O.ai offers a larger end-to-end ML platform called the H2O AI Cloud. The H2O AI Cloud integrates a hyper-advanced AutoML tool (called H2O Driverless AI) and other model building engines, an MLOps scoring, monitoring, and governance environment (called H2O MLOps), and a low-code software development kit, or SDK (called H2O Wave) with H2O API hooks to build AI applications that publish to the App Store. It also integrates H2O at scale as defined in this book.

H2O at scale can be deployed as standalone or as part of the H2O AI Cloud. As a standalone implementation, Enterprise Steam is not in fact required, but for reasons elaborated on later in this book, Enterprise Steam is deemed essential for enterprise implementations.

The majority of this book is focused on H2O at scale. The last part of the book will extend our understanding to the H2O AI Cloud and how H2O at scale components can leverage this larger integrated platform and vice versa.

Summary

In this chapter, we have set the stage for understanding and implementing ML at scale using H2O.ai technology. We have defined multiple forms of scale in an enterprise setting and articulated the challenges to ML from model building, model deployment, and enterprise stakeholder perspectives. We have anchored these challenges ultimately to the end goal of ML – providing business value. Finally, we briefly introduced H2O at scale components used by enterprises to overcome these challenges and achieve business value.

In the next chapter, we'll start to understand these components in greater technical detail so that we can start writing code and doing data science.

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Build highly accurate state-of-the-art machine learning models against large-scale data
  • Deploy models for batch, real-time, and streaming data in a wide variety of target production systems
  • Explore all the new features of the H2O AI Cloud end-to-end machine learning platform

Description

H2O is an open source, fast, and scalable machine learning framework that allows you to build models using big data and then easily productionalize them in diverse enterprise environments. Machine Learning at Scale with H2O begins with an overview of the challenges faced in building machine learning models on large enterprise systems, and then addresses how H2O helps you to overcome them. You’ll start by exploring H2O’s in-memory distributed architecture and find out how it enables you to build highly accurate and explainable models on massive datasets using your favorite ML algorithms, language, and IDE. You’ll also get to grips with the seamless integration of H2O model building and deployment with Spark using H2O Sparkling Water. You’ll then learn how to easily deploy models with H2O MOJO. Next, the book shows you how H2O Enterprise Steam handles admin configurations and user management, and then helps you to identify different stakeholder perspectives that a data scientist must understand in order to succeed in an enterprise setting. Finally, you’ll be introduced to the H2O AI Cloud platform and explore the entire machine learning life cycle using multiple advanced AI capabilities. By the end of this book, you’ll be able to build and deploy advanced, state-of-the-art machine learning models for your business needs.

Who is this book for?

This book is for data scientists and machine learning engineers who want to gain hands-on machine learning experience by building and deploying state-of-the-art models with advanced techniques using H2O technology. An understanding of the data science process and experience in Python programming is recommended. This book will also benefit students by helping them understand how machine learning works in real-world enterprise scenarios.

What you will learn

  • Build and deploy machine learning models using H2O
  • Explore advanced model-building techniques
  • Integrate Spark and H2O code using H2O Sparkling Water
  • Launch self-service model building environments
  • Deploy H2O models in a variety of target systems and scoring contexts
  • Expand your machine learning capabilities on the H2O AI Cloud
Estimated delivery fee Deliver to Mexico

Standard delivery 10 - 13 business days

Mex$149.95

Premium delivery 3 - 6 business days

Mex$299.95
(Includes tracking information)

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Jul 29, 2022
Length: 396 pages
Edition : 1st
Language : English
ISBN-13 : 9781800566019
Category :
Tools :

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Estimated delivery fee Deliver to Mexico

Standard delivery 10 - 13 business days

Mex$149.95

Premium delivery 3 - 6 business days

Mex$299.95
(Includes tracking information)

Product Details

Publication date : Jul 29, 2022
Length: 396 pages
Edition : 1st
Language : English
ISBN-13 : 9781800566019
Category :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just Mex$85 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just Mex$85 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total Mex$ 4,553.97
Solutions Architect's Handbook
Mex$1845.99
The Machine Learning Solutions Architect Handbook
Mex$1845.99
Machine Learning at Scale with H2O
Mex$861.99
Total Mex$ 4,553.97 Stars icon
Banner background image

Table of Contents

20 Chapters
Section 1 – Introduction to the H2O Machine Learning Platform for Data at Scale Chevron down icon Chevron up icon
Chapter 1: Opportunities and Challenges Chevron down icon Chevron up icon
Chapter 2: Platform Components and Key Concepts Chevron down icon Chevron up icon
Chapter 3: Fundamental Workflow – Data to Deployable Model Chevron down icon Chevron up icon
Section 2 – Building State-of-the-Art Models on Large Data Volumes Using H2O Chevron down icon Chevron up icon
Chapter 4: H2O Model Building at Scale – Capability Articulation Chevron down icon Chevron up icon
Chapter 5: Advanced Model Building – Part I Chevron down icon Chevron up icon
Chapter 6: Advanced Model Building – Part II Chevron down icon Chevron up icon
Chapter 7: Understanding ML Models Chevron down icon Chevron up icon
Chapter 8: Putting It All Together Chevron down icon Chevron up icon
Section 3 – Deploying Your Models to Production Environments Chevron down icon Chevron up icon
Chapter 9: Production Scoring and the H2O MOJO Chevron down icon Chevron up icon
Chapter 10: H2O Model Deployment Patterns Chevron down icon Chevron up icon
Section 4 – Enterprise Stakeholder Perspectives Chevron down icon Chevron up icon
Chapter 11: The Administrator and Operations Views Chevron down icon Chevron up icon
Chapter 12: The Enterprise Architect and Security Views Chevron down icon Chevron up icon
Section 5 – Broadening the View – Data to AI Applications with the H2O AI Cloud Platform Chevron down icon Chevron up icon
Chapter 13: Introducing H2O AI Cloud Chevron down icon Chevron up icon
Chapter 14: H2O at Scale in a Larger Platform Context Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Full star icon Full star icon 5
(2 Ratings)
5 star 100%
4 star 0%
3 star 0%
2 star 0%
1 star 0%
Yiqiao Yin Aug 11, 2022
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I really enjoyed reading this book. It's definitely a great introduction book for data scientists and machine learning engineers who want to gain some efficient fast hands-on experience. In addition, I get get to learn some new fancy tools of building and deploying state-of-the-art models with advanced techniques using H2O technology. It certainyl helps my understanding of the data science process and experience using Python programming. This book will also benefit students by helping them understand how machine learning works in real-world enterprise scenarios.✅Learn different perspective of machine learning deployment strategies at enterprise level✅Address novel techniques and deploy ML algorithms that tackle big data problems✅Use H2O Sparkling Water to navigate through different largescale datasets
Amazon Verified review Amazon
Chemere L Davis Sep 13, 2022
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book is an approachable guide to creating machine learning models on massive data in a reliable, repeatable, and resilient way. From novice to experienced professional there is a tip or trick for everyone. No matter what role you might play on a data science team, business stakeholder, operation, data science, Machine Learning at Scale with H2O is a playbook for a more successful implementation for real-world businesses.I've used H2O in building many models and still found new ways to make my models better. I highly recommend if you want to learn how to leverage machine learning from end-to-end for enterprise systems.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is the delivery time and cost of print book? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela
What is custom duty/charge? Chevron down icon Chevron up icon

Customs duty are charges levied on goods when they cross international borders. It is a tax that is imposed on imported goods. These duties are charged by special authorities and bodies created by local governments and are meant to protect local industries, economies, and businesses.

Do I have to pay customs charges for the print book order? Chevron down icon Chevron up icon

The orders shipped to the countries that are listed under EU27 will not bear custom charges. They are paid by Packt as part of the order.

List of EU27 countries: www.gov.uk/eu-eea:

A custom duty or localized taxes may be applicable on the shipment and would be charged by the recipient country outside of the EU27 which should be paid by the customer and these duties are not included in the shipping charges been charged on the order.

How do I know my custom duty charges? Chevron down icon Chevron up icon

The amount of duty payable varies greatly depending on the imported goods, the country of origin and several other factors like the total invoice amount or dimensions like weight, and other such criteria applicable in your country.

For example:

  • If you live in Mexico, and the declared value of your ordered items is over $ 50, for you to receive a package, you will have to pay additional import tax of 19% which will be $ 9.50 to the courier service.
  • Whereas if you live in Turkey, and the declared value of your ordered items is over € 22, for you to receive a package, you will have to pay additional import tax of 18% which will be € 3.96 to the courier service.
How can I cancel my order? Chevron down icon Chevron up icon

Cancellation Policy for Published Printed Books:

You can cancel any order within 1 hour of placing the order. Simply contact customercare@packt.com with your order details or payment transaction id. If your order has already started the shipment process, we will do our best to stop it. However, if it is already on the way to you then when you receive it, you can contact us at customercare@packt.com using the returns and refund process.

Please understand that Packt Publishing cannot provide refunds or cancel any order except for the cases described in our Return Policy (i.e. Packt Publishing agrees to replace your printed book because it arrives damaged or material defect in book), Packt Publishing will not accept returns.

What is your returns and refunds policy? Chevron down icon Chevron up icon

Return Policy:

We want you to be happy with your purchase from Packtpub.com. We will not hassle you with returning print books to us. If the print book you receive from us is incorrect, damaged, doesn't work or is unacceptably late, please contact Customer Relations Team on customercare@packt.com with the order number and issue details as explained below:

  1. If you ordered (eBook, Video or Print Book) incorrectly or accidentally, please contact Customer Relations Team on customercare@packt.com within one hour of placing the order and we will replace/refund you the item cost.
  2. Sadly, if your eBook or Video file is faulty or a fault occurs during the eBook or Video being made available to you, i.e. during download then you should contact Customer Relations Team within 14 days of purchase on customercare@packt.com who will be able to resolve this issue for you.
  3. You will have a choice of replacement or refund of the problem items.(damaged, defective or incorrect)
  4. Once Customer Care Team confirms that you will be refunded, you should receive the refund within 10 to 12 working days.
  5. If you are only requesting a refund of one book from a multiple order, then we will refund you the appropriate single item.
  6. Where the items were shipped under a free shipping offer, there will be no shipping costs to refund.

On the off chance your printed book arrives damaged, with book material defect, contact our Customer Relation Team on customercare@packt.com within 14 days of receipt of the book with appropriate evidence of damage and we will work with you to secure a replacement copy, if necessary. Please note that each printed book you order from us is individually made by Packt's professional book-printing partner which is on a print-on-demand basis.

What tax is charged? Chevron down icon Chevron up icon

Currently, no tax is charged on the purchase of any print book (subject to change based on the laws and regulations). A localized VAT fee is charged only to our European and UK customers on eBooks, Video and subscriptions that they buy. GST is charged to Indian customers for eBooks and video purchases.

What payment methods can I use? Chevron down icon Chevron up icon

You can pay with the following card types:

  1. Visa Debit
  2. Visa Credit
  3. MasterCard
  4. PayPal
What is the delivery time and cost of print books? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela