Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Linux Kernel Programming

You're reading from   Linux Kernel Programming A comprehensive guide to kernel internals, writing kernel modules, and kernel synchronization

Arrow left icon
Product type Paperback
Published in Mar 2021
Publisher Packt
ISBN-13 9781789953435
Length 754 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Kaiwan N. Billimoria Kaiwan N. Billimoria
Author Profile Icon Kaiwan N. Billimoria
Kaiwan N. Billimoria
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Section 1: The Basics
2. Kernel Workspace Setup FREE CHAPTER 3. Building the 5.x Linux Kernel from Source - Part 1 4. Building the 5.x Linux Kernel from Source - Part 2 5. Writing Your First Kernel Module - LKMs Part 1 6. Writing Your First Kernel Module - LKMs Part 2 7. Section 2: Understanding and Working with the Kernel
8. Kernel Internals Essentials - Processes and Threads 9. Memory Management Internals - Essentials 10. Kernel Memory Allocation for Module Authors - Part 1 11. Kernel Memory Allocation for Module Authors - Part 2 12. The CPU Scheduler - Part 1 13. The CPU Scheduler - Part 2 14. Section 3: Delving Deeper
15. Kernel Synchronization - Part 1 16. Kernel Synchronization - Part 2 17. About Packt 18. Other Books You May Enjoy

Installing a cross compiler

If you intend to write a C program that is compiled on a certain host system but must execute on another target system, then you need to compile it with what's known as a cross compiler or cross toolchain. For example, in our use case, we want to work on an x86-64 host machine. It could even be an x86-64 guest VM, no issues, but run our code on an ARM-32 target:

  • On Ubuntu, you can install the cross toolchain with the following:
sudo apt install crossbuild-essential-armhf

The preceding command installs an x86_64-to-ARM-32 toolchain appropriate for ARM-32 "hard float" (armhf) systems (such as the Raspberry Pi); this is usually just fine. It results in the arm-linux-gnueabihf-<foo> set of tools being installed; where <foo> represents cross tools such as addr2line, as, g++, gcc, gcov, gprof, ld, nm, objcopy, objdump, readelf, size, strip, and so on. (The cross compiler prefix in this case is arm-linux-gnueabihf-). In addition, though not mandatory, you can install the arm-linux-gnueabi-<foo> cross toolset like this:

sudo apt install gcc-arm-linux-gnueabi binutils-arm-linux-gnueabi
  • On Fedora, you can install the cross toolchain with the following:
sudo dnf install arm-none-eabi-binutils-cs-<ver#> arm-none-eabi-gcc-cs-<ver#>
For Fedora Linux, the same tip as earlier applies – use the Tab key to help auto-complete the command.

Installing and using a cross toolchain might require some reading up for newbie users. You can visit the Further reading section where I have placed a few useful links that will surely be of great help.

You have been reading a chapter from
Linux Kernel Programming
Published in: Mar 2021
Publisher: Packt
ISBN-13: 9781789953435
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime