Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Java for Data Science

You're reading from   Java for Data Science Examine the techniques and Java tools supporting the growing field of data science

Arrow left icon
Product type Paperback
Published in Jan 2017
Publisher Packt
ISBN-13 9781785280115
Length 386 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Jennifer L. Reese Jennifer L. Reese
Author Profile Icon Jennifer L. Reese
Jennifer L. Reese
Richard M. Reese Richard M. Reese
Author Profile Icon Richard M. Reese
Richard M. Reese
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with Data Science 2. Data Acquisition FREE CHAPTER 3. Data Cleaning 4. Data Visualization 5. Statistical Data Analysis Techniques 6. Machine Learning 7. Neural Networks 8. Deep Learning 9. Text Analysis 10. Visual and Audio Analysis 11. Mathematical and Parallel Techniques for Data Analysis 12. Bringing It All Together

Summary


In this chapter, we examined deep learning techniques for neural networks. All API support in this chapter was provided by Deeplearning4j. We began by demonstrating how to acquire and prepare data for use with deep learning networks. We discussed how to configure and build a model. This was followed by an explanation of how to train and test a model by splitting the dataset into training and testing segments.

Our discussion continued with an examination of deep learning and regression analysis. We showed how to prepare the data and class, build the model, and evaluate the model. We used sample data and displayed output statistics to demonstrate the relative effectiveness of our model.

RBM and DBNs were then examined. DBNs are comprised of RBMs stacked together and are especially useful for classification and clustering applications. Deep autoencoders are also built using RBMs, with two symmetrical DBNs. The autoencoders are especially useful for feature selection and extraction.

Finally...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image