Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Reinforcement Learning for Games

You're reading from   Hands-On Reinforcement Learning for Games Implementing self-learning agents in games using artificial intelligence techniques

Arrow left icon
Product type Paperback
Published in Jan 2020
Publisher Packt
ISBN-13 9781839214936
Length 432 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Micheal Lanham Micheal Lanham
Author Profile Icon Micheal Lanham
Micheal Lanham
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Section 1: Exploring the Environment
2. Understanding Rewards-Based Learning FREE CHAPTER 3. Dynamic Programming and the Bellman Equation 4. Monte Carlo Methods 5. Temporal Difference Learning 6. Exploring SARSA 7. Section 2: Exploiting the Knowledge
8. Going Deep with DQN 9. Going Deeper with DDQN 10. Policy Gradient Methods 11. Optimizing for Continuous Control 12. All about Rainbow DQN 13. Exploiting ML-Agents 14. DRL Frameworks 15. Section 3: Reward Yourself
16. 3D Worlds 17. From DRL to AGI 18. Other Books You May Enjoy

Unveiling Rainbow DQN

The author of Rainbow: Combining Improvements in Deep Reinforcement Learning, Matteo Hessel (https://arxiv.org/search/cs?searchtype=author&query=Hessel%2C+M), did several comparisons against other state-of-the-art models in DRL, many of which we have already looked at. They performed these comparisons against the standard 2D classic Atari games with impressive results. Rainbow DQN outperformed all of the current state-of-the-art algorithms. In the paper, they used the familiar classic Atari environment. This is fine since DeepMind has a lot of data for that environment that is specific to applicable models to compare with. However, many have observed that the paper lacks a comparison between PG methods, such as PPO. Of course, PPO is an OpenAI advancement and it may have been perceived by Google DeepMind to be an infringement or just wanting to avoid...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime