Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Hands-On Mathematics for Deep Learning
Hands-On Mathematics for Deep Learning

Hands-On Mathematics for Deep Learning: Build a solid mathematical foundation for training efficient deep neural networks

eBook
Mex$179.99 Mex$721.99
Paperback
Mex$902.99
Subscription
Free Trial

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Table of content icon View table of contents Preview book icon Preview Book

Hands-On Mathematics for Deep Learning

Linear Algebra

In this chapter, we will be covering the main concepts of linear algebra, and the concepts learned here will serve as the backbone on which we will learn all the concepts in the chapters to come, so it is important that you pay attention.

It is very important for you to know that these chapters cannot be substituted for an education in mathematics; they exist merely to help you better grasp the concepts of deep learning and how various architectures work and to develop an intuition for why that is, so you can become a better practitioner in the field.

At its core, algebra is nothing more than the study of mathematical symbols and the rules for manipulating these symbols. The field of algebra acts as a unifier for all of mathematics and provides us with a way of thinking. Instead of using numbers, we use letters to represent variables.

Linear algebra, however, concerns only linear transformations and vector spaces. It allows us to represent information through vectors, matrices, and tensors, and having a good understanding of linear algebra will take you a long way on your journey toward getting a very strong understanding of deep learning. It is said that a mathematical problem can only be solved if it can be reduced to a calculation in linear algebra. This speaks to the power and usefulness of linear algebra.

This chapter will cover the following topics:

  • Comparing scalars and vectors
  • Linear equations
  • Matrix operations
  • Vector spaces and subspaces
  • Linear maps
  • Matrix decompositions

Comparing scalars and vectors

Scalars are regular numbers, such as 7, 82, and 93,454. They only have a magnitude and are used to represent time, speed, distance, length, mass, work, power, area, volume, and so on.

Vectors, on the other hand, have magnitude and direction in many dimensions. We use vectors to represent velocity, acceleration, displacement, force, and momentum. We write vectors in bold—such as a instead of a—and they are usually an array of multiple numbers, with each number in this array being an element of the vector.

We denote this as follows:

Here, shows the vector is in n-dimensional real space, which results from taking the Cartesian product of n times; shows each element is a real number; i is the position of each element; and, finally, is a natural number, telling us how many elements are in the vector.

As with regular numbers, you can add and subtract vectors. However, there are some limitations.

Let's take the vector we saw earlier (x) and add it with another vector (y), both of which are in , so that the following applies:

However, we cannot add vectors with vectors that do not have the same dimension or scalars.

Note that when in , we reduce to 2-dimensions (for example, the surface of a sheet of paper), and when n = 3, we reduce to 3-dimensions (the real world).

We can, however, multiply scalars with vectors. Let λ be an arbitrary scalar, which we will multiply with the vector , so that the following applies:

As we can see, λ gets multiplied by each xi in the vector. The result of this operation is that the vector gets scaled by the value of the scalar.

For example, let , and . Then, we have the following:

While this works fine for multiplying by a whole number, it doesn't help when working with fractions, but you should be able to guess how it works. Let's see an example.

Let , and . Then, we have the following:

There is a very special vector that we can get by multiplying any vector by the scalar, 0. We denote this as 0 and call it the zero vector (a vector containing only zeros).

Linear equations

Linear algebra, at its core, is about solving a set of linear equations, referred to as a system of equations. A large number of problems can be formulated as a system of linear equations.

We have two equations and two unknowns, as follows:

Both equations produce straight lines. The solution to both these equations is the point where both lines meet. In this case, the answer is the point (3, 1).

But for our purposes, in linear algebra, we write the preceding equations as a vector equation that looks like this:

Here, b is the result vector.

Placing the point (3, 1) into the vector equation, we get the following:

As we can see, the left-hand side is equal to the right-hand side, so it is, in fact, a solution! However, I personally prefer to write this as a coefficient matrix, like so:

Using the coefficient matrix, we can express the system of equations as a matrix problem in the form , where the column vector v is the variable vector. We write this as shown:

.

Going forward, we will express all our problems in this format.

To develop a better understanding, we'll break down the multiplication of matrix A and vector v. It is easiest to think of it as a linear combination of vectors. Let's take a look at the following example with a 3x3 matrix and a 3x1 vector:

It is important to note that matrix and vector multiplication is only possible when the number of columns in the matrix is equal to the number of rows (elements) in the vector.

For example, let's look at the following matrix:

This can be multiplied since the number of columns in the matrix is equal to the number of rows in the vector, but the following matrix cannot be multiplied as the number of columns and number of rows are not equal:

Let's visualize some of the operations on vectors to create an intuition of how they work. Have a look at the following screenshot:

The preceding vectors we dealt with are all in (in 2-dimensional space), and all resulting combinations of these vectors will also be in . The same applies for vectors in , , and .

There is another very important vector operation called the dot product, which is a type of multiplication. Let's take two arbitrary vectors in , v and w, and find its dot product, like this:

The following is the product:

.

Let's continue, using the same vectors we dealt with before, as follows:

And by taking their dot product, we get zero, which tells us that the two vectors are perpendicular (there is a 90° angle between them), as shown here:

The most common example of a perpendicular vector is seen with the vectors that represent the x axis, the y axis, and so on. In , we write the x axis vector as and the y axis vector as . If we take the dot product ij, we find that it is equal to zero, and they are thus perpendicular.

By combining i and j into a 2x2 matrix, we get the following identity matrix, which is a very important matrix:

The following are some of the scenarios we will face when solving linear equations of the type :

  • Let's consider the matrix and the equations and . If we do the algebra and multiply the first equation by 3, we get . But the second equation is equal to zero, which means that these two equations do not intersect and therefore have no solution. When one column is dependent on another—that is, is a multiple of another column—all combinations of and lie in the same direction. However, seeing as is not a combination of the two aforementioned column vectors and does not lie on the same line, it cannot be a solution to the equation.
  • Let's take the same matrix as before, but this time, . Since b is on the line and is a combination of the dependent vectors, there is an infinite number of solutions. We say that b is in the column space of A. While there is only one specific combination of v that produces b, there are infinite combinations of the column vectors that result in the zero vector (0). For example, for any value, a, we have the following:

This leads us to another very important concept, known as the complete solution. The complete solution is all the possible ways to produce . We write this as , where .

Solving linear equations in n-dimensions

Now that we've dealt with linear equations in 2-dimensions and have developed an understanding of them, let's go a step further and look at equations in 3-dimensions.

Earlier, our equations produced curves in the 2-dimensional space (xy-plane). Now, the equations we will be dealing with will produce planes in 3-dimensional space (xyz-plane).

Let's take an arbitrary 3x3 matrix, as follows:

We know from earlier in having dealt with linear equations in two dimensions that our solution b, as before, is a linear combination of the three column vectors, so that .

The equation (equation 1) produces a plane, as do (equation 2), and (equation 3).

When two planes intersect, they intersect at a line; however, when three planes intersect, they intersect at a point. That point is the vector , which is the solution to our problem.

However, if the three planes do not intersect at a point, there is no solution to the linear equation. This same concept of solving linear equations can be extended to many more dimensions.

Suppose now that we have a system with 15 linear equations and 15 unknown variables. We can use the preceding method and, according to it, we need to find the point that satisfies all the 15 equations—that is, where they intersect (if it exists).

It will look like this:

As you can tell, that's a lot of equations we have to deal with, and the greater the number of dimensions, the harder this becomes to solve.

Solving linear equations using elimination

One of the best ways to solve linear equations is by a systematic method known as elimination. This is a method that allows us to systematically eliminate variables and use substitution to solve equations.

Let's take a look at two equations with two variables, as follows:

After elimination, this becomes the following:

As we can see, the x variable is no longer in the second equation. We can plug the y value back into the first equation and solve for x. Doing this, we find that x = 3 and y = 1.

We call this triangular factorization. There are two types—lower triangular and upper triangular. We solve the upper triangular system from top to bottom using a process known as back substitution, and this works for systems of any size.

While this is an effective method, it is not fail-proof. We could come across a scenario where we have more equations than variables, or more variables than equations, which are unsolvable. Or, we could have a scenario such as 0x = 7, and, as we know, dividing by zero is impossible.

Let's solve three equations with three variables, as follows:

We will use upper triangular factorization and eliminate variables, starting with y and then z. Let's start by putting this into our matrix form, as follows:

For our purposes and to make things simpler, we will drop v, the column vector, and get the following result:

Then, exchange row 2 and row 3 with each other, like this:

Then, add row 2 and row 1 together to eliminate the first value in row 2, like this:

Next, multiply row 1 by 3/2 and subtract it from row 3, like this:

Finally, multiply row 2 by 6 and subtract it from row 3, like this:

As you can notice, the values in the matrix now form a triangle pointing upward, which is why we call it upper triangular. By substituting the values back into the previous equation backward (from bottom to top), we can solve, and find that , , and .

In summary, becomes , as illustrated here:

Note: The values across the diagonal in the triangular factorized matrix are called pivots, and when factorized, the values below the diagonal are all zeros.

To check that our found solution is right, we solve , using our found values for x, y, and z, like this:

This then becomes the following equation:

And as we can see, the left-hand side is equal to the right-hand side.

After upper triangular factorization, an arbitrary 4x4 matrix will look like this:

We could take this a step further and factorize the upper triangular matrix until we end up with a matrix that contains only the pivot values along the diagonal, and zeros everywhere else. This resulting matrix P essentially fully solves the problem for us without us having to resort to forward or backward substitution, and it looks like this:

But as you can tell, there are a lot of steps involved in getting us from A to P.

There is one other very important factorization method called lower-upper (LU) decomposition. The way it works is we factorize A into an upper triangular matrix U, and record the steps of Gaussian elimination in a lower triangular matrix L, such that .

Let's revisit the matrix we upper-triangular factorized before and put it into LU factorized form, like this:

If we multiply the two matrices on the right, we will get the original matrix A. But how did we get here? Let's go through the steps, as follows:

  1. We start with , so that the following applies:
  1. We add -1 to what was the identity matrix at l2,1 to represent the operation (row 2)-(-1)(row 1), so it becomes the following:
  1. We then add to the matrix at l3,1 to represent the operation, so it becomes the following:
  1. We then add 6 to the matrix at l3,2 to represent the operation (row 3)-6(row 2), so it becomes the following:

This is the LU factorized matrix we saw earlier.

You might now be wondering what this has to do with solving , which is very valid. The elimination process tends to work quite well, but we have to additionally apply all the operations we did on A to b as well, and this involves extra steps. However, LU factorization is only applied to A.

Let's now take a look at how we can solve our system of linear equations using this method.

For simplicity, we drop the variables vector and write A and b as follows:

But even this can get cumbersome to write as we go, so we will instead write it in the following way for further simplicity:

We then multiply both sides by and get the following result:

This tells us that , and we already know from the preceding equation that (so ). And by using back substitution, we can find the vector v.

In the preceding example, you may have noticed some new notation that I have not yet introduced, but not to worry—we will observe all the necessary notation and operations in the next section.

Matrix operations

Now that we understand how to solve systems of linear equations of the type where we multiplied a matrix with a column vector, let's move on to dealing with the types of operations we can do with one or more matrices.

Adding matrices

As with scalars and vectors, sometimes we may have to add two or more matrices together, and the process of doing so is rather straightforward. Let's take two matrices, A and B, and add them:

It is important to note that we can only add matrices that have the same dimensions, and, as you have probably noticed, we add the matrices element-wise.

Multiplying matrices

So far, we have only multiplied a matrix by a column vector. But now, we will multiply a matrix A with another matrix B.

There are four simple rules that will help us in multiplying matrices, listed here:

  • Firstly, we can only multiply two matrices when the number of columns in matrix A is equal to the number of rows in matrix B.
  • Secondly, the first row of matrix A multiplied by the first column of matrix B gives us the first element in the matrix AB, and so on.
  • Thirdly, when multiplying, order matters—specifically, ABBA.
  • Lastly, the element at row i, column j is the product of the ith row of matrix A and the jth column of matrix B.

Let's multiply an arbitrary 4x5 matrix with an arbitrary 5x6 matrix, as follows:

This results in a 4x6 matrix, like this:

From that, we can deduce that in general, the following applies:

Let's take the following two matrices and multiply them, like this:

and

This will give us the following matrix:

.

Note: In this example, the matrix B is the identity matrix, usually written as I.

The identity matrix has two unique properties in matrix multiplication. When multiplied by any matrix, it returns the original matrix unchanged, and the order of multiplication does not matter—so, AI = IA = A.

For example, let's use the same matrix A from earlier, and multiply it by another matrix B, as follows:

Another very special matrix is the inverse matrix, which is written as A-1. And when we multiply A with A-1, we receive I, the identity matrix.

As mentioned before, the order in which we multiply matters. We must keep the matrices in order, but we do have some flexibility. As we can see in the following equation, the parentheses can be moved:

This is the first law of matrix operations, known as associativity.

The following are three important laws that cannot be broken:

  • commutativity:
  • distributivity: or
  • associativity:

As proof that AB ≠ BA, let's take a look at the following example:

This conclusively shows that the two results are not the same.

We know that we can raise numbers to powers, but we can also raise matrices to powers.

If we raise the matrix A to power p, we get the following:

(multiplying the matrix by itself p times)

There are two additional power laws for matrices— and .

Inverse matrices

Let's revisit the concept of inverse matrices and go a little more in depth with them. We know from earlier that AA-1 = I, but not every matrix has an inverse.

There are, again, some rules we must follow when it comes to finding the inverses of matrices, as follows:

  • The inverse only exists if, through the process of upper or lower triangular factorization, we obtain all the pivot values on the diagonal.
  • If the matrix is invertible, it has only one unique inverse matrix—that is, if AB = I and AC = I, then B = C.
  • If A is invertible, then to solve Av = b we multiply both sides by A-1 and get AA-1v = A-1b, which finally gives us = A-1b.
  • If v is nonzero and b = 0, then the matrix does not have an inverse.
  • 2 x 2 matrices are invertible only if ad - bc ≠ 0, where the following applies:

And ad - bc is called the determinant of A. A-1 involves dividing each element in the matrix by the determinant.

  • Lastly, if the matrix has any zero values along the diagonal, it is non-invertible.

Sometimes, we may have to invert the product of two matrices, but that is only possible when both the matrices are individually invertible (follow the rules outlined previously).

For example, let's take two matrices A and B, which are both invertible. Then, so that .

Note: Pay close attention to the order of the inverse—it too must follow the order. The left-hand side is the mirror image of the right-hand side.

Matrix transpose

Let's take an matrix A. If the matrix's transpose is B, then the dimensions of B are , such that: . Here is the matrix A:

Then, the matrix B is as given:

.

Essentially, we can think of this as writing the columns of A as the rows of the transposed matrix, B.

We usually write the transpose of A as AT.

A symmetric matrix is a special kind of matrix. It is an n×n matrix that, when transposed, is exactly the same as before we transposed it.

The following are the properties of inverses and transposes:

If A is an invertible matrix, then so is AT, and so (A-1)T = (AT)-1 = A-T.

Permutations

In the example on solving systems of linear equations, we swapped the positions of rows 2 and 3. This is known as a permutation.

When we are doing triangular factorization, we want our pivot values to be along the diagonal of the matrix, but this won't happen every time—in fact, it usually won't. So, instead, what we do is swap the rows so that we get our pivot values where we want them.

But that is not their only use case. We can also use them to scale individual rows by a scalar value or add rows to or subtract rows from other rows.

Let's start with some of the more basic permutation matrices that we obtain by swapping the rows of the identity matrix. In general, we have n! possible permutation matrices that can be formed from an nxn identity matrix. In this example, we will use a 3×3 matrix and therefore have six permutation matrices, and they are as follows:

  • This matrix makes no change to the matrix it is applied on.
  • This matrix swaps rows two and three of the matrix it is applied on.
  • This matrix swaps rows one and two of the matrix it is applied on.
  • This matrix shifts rows two and three up one and moves row one to the position of row three of the matrix it is applied on.
  • This matrix shifts rows one and two down one and moves row three to the row-one position of the matrix it is applied on.
  • This matrix swaps rows one and three of the matrix it is applied on.

It is important to note that there is a particularly fascinating property of permutation matrices that states that if we have a matrix and it is invertible, then there exists a permutation matrix that when applied to A will give us the LU factor of A. We can express this like so:

Vector spaces and subspaces

In this section, we will explore the concepts of vector spaces and subspaces. These are very important to our understanding of linear algebra. In fact, if we do not have an understanding of vector spaces and subspaces, we do not truly have an understanding of how to solve linear algebra problems.

Spaces

Vector spaces are one of the fundamental settings for linear algebra, and, as the name suggests, they are spaces where all vectors reside. We will denote the vector space with V.

The easiest way to think of dimensions is to count the number of elements in the column vector. Suppose we have , then . is a straight line, is all the possible points in the xy-plane, and is all the possible points in the xyz-plane—that is, 3-dimensional space, and so on.

The following are some of the rules for vector spaces:

  • There exists in V an additive identity element such that for all .
  • For all , there exists an additive inverse such that .
  • For all , there exists a multiplicative identity such that .
  • Vectors are commutative, such that for all , .
  • Vectors are associative, such that .
  • Vectors have distributivity, such that and for all and for all .

A set of vectors is said to be linearly independent if , which implies that .

Another important concept for us to know is called span. The span of is the set of all linear combinations that can be made using the n vectors. Therefore, if the vectors are linearly independent and span V completely; then, the vectors are the basis of V.

Therefore, the dimension of V is the number of basis vectors we have, and we denote it dimV.

Subspaces

Subspaces are another very important concept that state that we can have one or many vector spaces inside another vector space. Let's suppose V is a vector space, and we have a subspace . Then, S can only be a subspace if it follows the three rules, stated as follows:

  • and , which implies that S is closed under addition
  • and so that , which implies that S is closed under scalar multiplication

If , then their sum is , where the result is also a subspace of V.

The dimension of the sum is as follows:

Linear maps

A linear map is a function , where V and W are both vector spaces. They must satisfy the following criteria:

  • , for all
  • , for all and

Linear maps tend to preserve the properties of vector spaces under addition and scalar multiplication. A linear map is called a homomorphism of vector spaces; however, if the homomorphism is invertible (where the inverse is a homomorphism), then we call the mapping an isomorphism.

When V and W are isomorphic, we denote this as , and they both have the same algebraic structure.

If V and W are vector spaces in , and , then it is called a natural isomorphism. We write this as follows:

Here, and are the bases of V and W. Using the preceding equation, we can see that , which tells us that is an isomorphism.

Let's take the same vector spaces V and W as before, with bases and respectively. We know that is a linear map, and the matrix T that has entries Aij, where and can be defined as follows:

.

From our knowledge of matrices, we should know that the jth column of A contains Tvj in the basis of W.

Thus, produces a linear map , which we write as .

Image and kernel

When dealing with linear mappings, we will often encounter two important terms: the image and the kernel, both of which are vector subspaces with rather important properties.

The kernel (sometimes called the null space) is 0 (the zero vector) and is produced by a linear map, as follows:

And the image (sometimes called the range) of T is defined as follows:

such that .

V and W are also sometimes known as the domain and codomain of T.

It is best to think of the kernel as a linear mapping that maps the vectors to . The image, however, is the set of all possible linear combinations of that can be mapped to the set of vectors .

The Rank-Nullity theorem (sometimes referred to as the fundamental theorem of linear mappings) states that given two vector spaces V and W and a linear mapping , the following will remain true:

.

Metric space and normed space

Metrics help define the concept of distance in Euclidean space (denoted by ). Metric spaces, however, needn't always be vector spaces. We use them because they allow us to define limits for objects besides real numbers.

So far, we have been dealing with vectors, but what we don't yet know is how to calculate the length of a vector or the distance between two or more vectors, as well as the angle between two vectors, and thus the concept of orthogonality (perpendicularity). This is where Euclidean spaces come in handy. In fact, they are the fundamental space of geometry. This may seem rather trivial at the moment, but their importance will become more apparent to you as we get further on in the book.

In Euclidean space, we tend to refer to vectors as points.

A metric on a set S is defined as a function and satisfies the following criteria:

  • , and when then
  • (known as the triangle inequality)

For all .

That's all well and good, but how exactly do we calculate distance?

Let's suppose we have two points, and ; then, the distance between them can be calculated as follows:

And we can extend this to find the distance of points in , as follows:

While metrics help with the notion of distance, norms define the concept of length in Euclidean space.

A norm on a vector space is a function , and satisfies the following conditions:

  • , and when then
  • (also known as the triangle inequality)

For all and .

It is important to note that any norm on the vector space creates a distance metric on the said vector space, as follows:

This satisfies the rules for metrics, telling us that a normed space is also a metric space.

In general, for our purposes, we will only be concerned with four norms on , as follows:

  • (this applies only if )

If you look carefully at the four norms, you can notice that the 1- and 2-norms are versions of the p-norm. The -norm, however, is a limit of the p-norm, as p tends to infinity.

Using these definitions, we can define two vectors to be orthogonal if the following applies:

Inner product space

An inner product on a vector space is a function , and satisfies the following rules:

  • and

For all and .

It is important to note that any inner product on the vector space creates a norm on the said vector space, which we see as follows:

We can notice from these rules and definitions that all inner product spaces are also normed spaces, and therefore also metric spaces.

Another very important concept is orthogonality, which in a nutshell means that two vectors are perpendicular to each other (that is, they are at a right angle to each other) from Euclidean space.

Two vectors are orthogonal if their inner product is zero—that is, . As a shorthand for perpendicularity, we write .

Additionally, if the two orthogonal vectors are of unit length—that is, , then they are called orthonormal.

In general, the inner product in is as follows:

Matrix decompositions

Matrix decompositions are a set of methods that we use to describe matrices using more interpretable matrices and give us insight to the matrices' properties.

Determinant

Earlier, we got a quick glimpse of the determinant of a square 2x2 matrix when we wanted to determine whether a square matrix was invertible. The determinant is a very important concept in linear algebra and is used frequently in the solving of systems of linear equations.

Note: The determinant only exists when we have square matrices.

Notationally, the determinant is usually written as either or .

Let's take an arbitrary n×n matrix A, as follows:

We will also take its determinant, as follows:

The determinant reduces the matrix to a real number (or, in other words, maps A onto a real number).

We start by checking if a square matrix is invertible. Let's take a 2x2 matrix, and from the earlier definition, we know that the matrix applied to its inverse produces the identity matrix. It works no differently than when we multiply a with (only true when ), which produces 1, except with matrices. Therefore, AA-1 = I.

Let's go ahead and find the inverse of our matrix, as follows:

A is invertible only when , and this resulting value is what we call the determinator.

Now that we know how to find the determinant in the 2x2 case, let's move on to a 3x3 matrix and find its determinant. It looks like this:

This produces the following:

I know that probably looks more intimidating, but it's really not. Take a moment to look carefully at what we did and how this would work for a larger n×n matrix.

If we have an n×n matrix and if it can be triangularly factorized (upper or lower), then its determinant will be the product of all the pivot values. For the sake of simplicity, we will represent all triangularly factorizable matrices with T. Therefore, the determinant can be written like so:

Looking at the preceding 3×3 matrix example, I'm sure you've figured out that computing the determinant for matrices where n > 3 is quite a lengthy process. Luckily, there is a way in which we can simplify the calculation, and this is where the Laplace expansion comes to the rescue.

When we want to find the determinant of an n×n matrix, the Laplace expansion finds the determinant of (n×1)×(n×1) matrices and does so repeatedly until we get to 2×2 matrices. In general, we can calculate the determinant of an n×n matrix using 2×2 matrices.

Let's again take an n-dimensional square matrix, where . We then expand for all , as follows:

  • Expansion along row i:
  • Expansion along row j:

And is a sub-matrix of , which we get after removing row i and column j.

For example, we have a 3×3 matrix, as follows:

We want to find its determinant using the Laplace expansion along the first row. This results in the following:

We can now use the preceding equation from the 2×2 case and calculate the determinant for A, as follows:

.

Here are some of the very important properties of determinants that are important to know:

There is one other additional property of the determinant, and it is that we can use it to find the volume of an object in whose vertices are formed by the column vectors in the matrix.

As an example, let's take a parallelogram in with the vectors and . By taking the determinant of the 2×2 matrix, we find the area of the shape (we can only find the volume for objects in or higher), as follows:

You are welcome to try it for any 3×3 matrix for yourselves as practice.

Eigenvalues and eigenvectors

Let's imagine an arbitrary real n×n matrix, A. It is very possible that when we apply this matrix to some vector, they are scaled by a constant value. If this is the case, we say that the nonzero -dimensional vector is an eigenvector of A, and it corresponds to an eigenvalue λ. We write this as follows:

Note: The zero vector (0) cannot be an eigenvector of A, since A0 = 0 = λ0 for all λ.

Let's consider again a matrix A that has an eigenvector x and a corresponding eigenvalue λ. Then, the following rules will apply:

  • If we have a matrix A and it has been shifted from its current position to , then it has the eigenvector x and the corresponding eigenvalue , for all , so that .
  • If the matrix A is invertible, then x is also an eigenvector of the inverse of the matrix, , with the corresponding eigenvalue .
  • for any .

We know from earlier in the chapter that whenever we multiply a matrix and a vector, the direction of the vector is changed, but this is not the case with eigenvectors. They are in the same direction as A, and thus x remains unchanged. The eigenvalue, being a scalar value, tells us whether the eigenvector is being scaled, and if so, how much, as well as if the direction of the vector has changed.

Another very fascinating property the determinant has is that it is equivalent to the product of the eigenvalues of the matrix, and it is written as follows:

But this isn't the only relation that the determinant has with eigenvalues. We can rewrite in the form. And since this is equal to zero, this means it is a non-invertible matrix, and therefore its determinant too must be equal to zero. Using this, we can use the determinant to find the eigenvalues. Let's see how.

Suppose we have . Then, its determinant is shown as follows:

We can rewrite this as the following quadratic equation:

We know that the quadratic equation will give us both the eigenvalues . So, we plug our values into the quadratic formula and get our roots.

Another interesting property is that when we have triangular matrices such as the ones we found earlier in this chapter, their eigenvalues are the pivot values. So, if we want to find the determinant of a triangular matrix, then all we have to do is find the product of all the entries along the diagonal.

Trace

Given an n×n matrix A, the sum of all the entries on the diagonal is called the trace. We write it like so:

The following are four important properties of the trace:

A very interesting property of the trace is that it is equal to the sum of its eigenvalues, so that the following applies:

Orthogonal matrices

The concept of orthogonality arises frequently in linear algebra. It's really just a fancy word for perpendicularity, except it goes beyond two dimensions or a pair of vectors.

But to get an understanding, let's start with two column vectors . If they are orthogonal, then the following holds:

.

Orthogonal matrices are a special kind of matrix where the columns are pairwise orthonormal. What this means is that we have a matrix with the following property:

Then, we can deduce that (that is, the transpose of Q is also the inverse of Q).

As with other types of matrices, orthogonal matrices have some special properties.

Firstly, they preserve inner products, so that the following applies:

.

This brings us to the second property, which states that 2-norms are preserved for orthogonal matrices, which we see as follows:

When multiplying by orthogonal matrices, you can think of it as a transformation that preserves length, but the vector may be rotated about the origin by some degree.

The most well-known orthogonal matrix that is also orthonormal is a special matrix we have dealt with a few times already. It is the identity matrix I, and since it represents a unit of length in the direction of axes, we generally refer to it as the standard basis.

Diagonalization and symmetric matrices

Let's suppose we have a matrix that has eigenvectors. We put these vectors into a matrix X that is invertible and multiply the two matrices. This gives us the following:

We know from that when dealing with matrices, this becomes , where and each xi has a unique λi. Therefore, .

Let's move on to symmetric matrices. These are special matrices that, when transposed, are the same as the original, implying that and for all , . This may seem rather trivial, but its implications are rather strong.

The spectral theorem states that if a matrix is a symmetric matrix, then there exists an orthonormal basis for , which contains the eigenvectors of A.

This theorem is important to us because it allows us to factorize symmetric matrices. We call this spectral decomposition (also sometimes referred to as Eigendecomposition).

Suppose we have an orthogonal matrix Q, with the orthonormal basis of eigenvectors and being the matrix with corresponding eigenvalues.

From earlier, we know that for all ; therefore, we have the following:

Note: Λ comes after Q because it is a diagonal matrix, and the s need to multiply the individual columns of Q.

By multiplying both sides by QT, we get the following result:

Singular value decomposition

Singular Value Decomposition (SVD) is widely used in linear algebra and is known for its strength, particularly arising from the fact that every matrix has an SVD. It looks like this:

For our purposes, let's suppose , , , and , and that U, V are orthogonal matrices, whereas ∑ is a matrix that contains singular values (denoted by σi) of A along the diagonal.

in the preceding equation looks like this:

We can also write the SVD like so:

Here, ui, vi are the column vectors of U, V.

Cholesky decomposition

As I'm sure you've figured out by now, there is more than one way to factorize a matrix, and there are special methods for special matrices.

The Cholesky decomposition is square root-like and works only on symmetric positive definite matrices.

This works by factorizing A into the form LLT. Here, L, as before, is a lower triangular matrix.

Do develop some intuition. It looks like this:

However, here, L is called a Cholesky factor.

Let's take a look at the case where .

We know from the preceding matrix that ; therefore, we have the following:

Let's multiply the upper and lower triangular matrices on the right, as follows:

Writing out A fully and equating it to our preceding matrix gives us the following:

We can then compare, element-wise, the corresponding entries of A and LLT and solve algebraically for , as follows:

We can repeat this process for any symmetric positive definite matrix, and compute the li,j values given ai,j.

Summary

With this, we conclude our chapter on linear algebra. So far, we have learned all the fundamental concepts of linear algebra, such as matrix multiplication and factorization, that will lead you on your way to gaining a deep understanding of how deep neural networks (DNNs) work and are designed, and what it is that makes them so powerful.

In the next chapter, we will be learning about calculus and will combine it with the concepts learned earlier on in this chapter to understand vector calculus.

Left arrow icon Right arrow icon

Key benefits

  • Understand linear algebra, calculus, gradient algorithms, and other concepts essential for training deep neural networks
  • Learn the mathematical concepts needed to understand how deep learning models function
  • Use deep learning for solving problems related to vision, image, text, and sequence applications

Description

Most programmers and data scientists struggle with mathematics, having either overlooked or forgotten core mathematical concepts. This book uses Python libraries to help you understand the math required to build deep learning (DL) models. You'll begin by learning about core mathematical and modern computational techniques used to design and implement DL algorithms. This book will cover essential topics, such as linear algebra, eigenvalues and eigenvectors, the singular value decomposition concept, and gradient algorithms, to help you understand how to train deep neural networks. Later chapters focus on important neural networks, such as the linear neural network and multilayer perceptrons, with a primary focus on helping you learn how each model works. As you advance, you will delve into the math used for regularization, multi-layered DL, forward propagation, optimization, and backpropagation techniques to understand what it takes to build full-fledged DL models. Finally, you’ll explore CNN, recurrent neural network (RNN), and GAN models and their application. By the end of this book, you'll have built a strong foundation in neural networks and DL mathematical concepts, which will help you to confidently research and build custom models in DL.

Who is this book for?

This book is for data scientists, machine learning developers, aspiring deep learning developers, or anyone who wants to understand the foundation of deep learning by learning the math behind it. Working knowledge of the Python programming language and machine learning basics is required.

What you will learn

  • Understand the key mathematical concepts for building neural network models
  • Discover core multivariable calculus concepts
  • Improve the performance of deep learning models using optimization techniques
  • Cover optimization algorithms, from basic stochastic gradient descent (SGD) to the advanced Adam optimizer
  • Understand computational graphs and their importance in DL
  • Explore the backpropagation algorithm to reduce output error
  • Cover DL algorithms such as convolutional neural networks (CNNs), sequence models, and generative adversarial networks (GANs)
Estimated delivery fee Deliver to Mexico

Standard delivery 10 - 13 business days

Mex$149.95

Premium delivery 3 - 6 business days

Mex$299.95
(Includes tracking information)

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Jun 12, 2020
Length: 364 pages
Edition : 1st
Language : English
ISBN-13 : 9781838647292
Vendor :
Google
Category :
Languages :
Concepts :
Tools :

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Estimated delivery fee Deliver to Mexico

Standard delivery 10 - 13 business days

Mex$149.95

Premium delivery 3 - 6 business days

Mex$299.95
(Includes tracking information)

Product Details

Publication date : Jun 12, 2020
Length: 364 pages
Edition : 1st
Language : English
ISBN-13 : 9781838647292
Vendor :
Google
Category :
Languages :
Concepts :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just Mex$85 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just Mex$85 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total Mex$ 3,282.97
Hands-On Mathematics for Deep Learning
Mex$902.99
40 Algorithms Every Programmer Should Know
Mex$1025.99
Practical Discrete Mathematics
Mex$1353.99
Total Mex$ 3,282.97 Stars icon
Banner background image

Table of Contents

18 Chapters
Section 1: Essential Mathematics for Deep Learning Chevron down icon Chevron up icon
Linear Algebra Chevron down icon Chevron up icon
Vector Calculus Chevron down icon Chevron up icon
Probability and Statistics Chevron down icon Chevron up icon
Optimization Chevron down icon Chevron up icon
Graph Theory Chevron down icon Chevron up icon
Section 2: Essential Neural Networks Chevron down icon Chevron up icon
Linear Neural Networks Chevron down icon Chevron up icon
Feedforward Neural Networks Chevron down icon Chevron up icon
Regularization Chevron down icon Chevron up icon
Convolutional Neural Networks Chevron down icon Chevron up icon
Recurrent Neural Networks Chevron down icon Chevron up icon
Section 3: Advanced Deep Learning Concepts Simplified Chevron down icon Chevron up icon
Attention Mechanisms Chevron down icon Chevron up icon
Generative Models Chevron down icon Chevron up icon
Transfer and Meta Learning Chevron down icon Chevron up icon
Geometric Deep Learning Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Half star icon Empty star icon 3.6
(11 Ratings)
5 star 54.5%
4 star 0%
3 star 9.1%
2 star 27.3%
1 star 9.1%
Filter icon Filter
Top Reviews

Filter reviews by




Davd Suzuki Oct 24, 2024
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Feefo Verified review Feefo
Kabeer Oct 09, 2020
Full star icon Full star icon Full star icon Full star icon Full star icon 5
The book is a good introductory text to get into the subject. Really clarifies concepts in a very simple and intuitive way. Recommended in particular for anyone who has struggled with math in the past too.
Amazon Verified review Amazon
Matthew Emerick Jun 29, 2020
Full star icon Full star icon Full star icon Full star icon Full star icon 5
About This BookThis book is the latest in a collection of attempts to teach aspiring and experience machine learning practitioners the mathematics underlying their field. Knowing this will help anyone truly understand how their algorithms work in more detail and can assist in strengthening their predictions or troubleshooting when the results don't match up.It begins with the basics of linear algebra, calculus, and statistics, moves on to optimization and graph theory, and then digs deeper into more specific mathematics. The second section takes the foundation and looks at different kinds of simpler neural networks. The final section pushes even further into deep learning and makes sure that the reader can explain why their deep learning models do what they do.Who is This For?From the Preface, this book is for anyone who wants to go from the basic mathematical concepts to the exact mathematical structures used in calculating the results for deep learning. It does not expect the reader to know the math, though it would be helpful, but it does expect the reader to know the basics of how machine learning works.With how difficult most people find mathematics, I know that many machine learning practitioners won't want to delve deep into these fundamentals, if they even are curious at all. But every field has a foundation, and I would argue that mathematics is that foundation for machine learning. After all, machine learning is fundamentally a mathematically transformation of the input to the output.Why Was This Written?There are only a handful of books written on this subject, of which I own most of them. Most focus only on the basics of linear algebra, calculus, and statistics. Another perspective on comparing these books is the approach taken. I can think of only one other book written specifically for the mathematics of deep learning, and that one assumes the reader thinks more like a mathematician. This book, instead, sees the reader as a developer with hands on experience who wants to know why their algorithms work. I feel that this is an important contribution to anyone's collection.OrganizationThree three section organization works well here. The author progresses from the basics to the core subject matter indicated by the title of the book without leaving anything important out. Remember, this book isn't about learning everything about these mathematical subjects, but about knowing enough to better understand deep learning. You're aren't going to focus on proving that the math works, but will trust that the math works and apply it.Within each chapter, the author deftly introduces each topic, builds on the subject from the basics up to the more advanced subtopics you should know about, and then gives a summary to refresh the earlier material and bring it all together. There is a complete preface, which I recommend you read through before starting, and a further reading section with other offerings from the publisher on deep learning.Did This Book Succeed?I think the author did very well. It gives the reader all of the mathematics they will need to progress on their machine learning and deep learning journeys. Where I think this book fell short, as it is written for practitioners, is that it could have expanded by another 100-150 pages and added in code to show how a programming language can efficiently calculate the math. This could help the reader write better code. If the author decides to write a second edition, I hope that they will consider this.Rating and Final ThoughtsI give this book a 5 out of 5. It is complete, readable, and helpful. It does what it says it is going to do very well. I commend the author and hope to see more from them. If you are considering buying this book, it is a good addition if you want to be a better machine learning practitioner.
Amazon Verified review Amazon
Amazon Customer Oct 09, 2020
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I have been a data scientist for several years now and because of the hype I decided to try and learn deep learning. I decided to buy this book and it does a very good job of explaining how the different fields of math such as linear algebra, vector calculus, probability, etc come together to create various neural networks in a very clear and simple manner that anyone can understand. And it gives several good walk-throughs of forward and backward propagation in various NNs and shows comparisons between architectures and possible use cases as well.
Amazon Verified review Amazon
TD59 Feb 24, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I teach Machine Learning in graduate school. Many times, students ask me for a book that provides a quick refresh of key math principles. While there are many great books to choose from, I usually put Hands-on Mathematics high on my list.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is the delivery time and cost of print book? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela
What is custom duty/charge? Chevron down icon Chevron up icon

Customs duty are charges levied on goods when they cross international borders. It is a tax that is imposed on imported goods. These duties are charged by special authorities and bodies created by local governments and are meant to protect local industries, economies, and businesses.

Do I have to pay customs charges for the print book order? Chevron down icon Chevron up icon

The orders shipped to the countries that are listed under EU27 will not bear custom charges. They are paid by Packt as part of the order.

List of EU27 countries: www.gov.uk/eu-eea:

A custom duty or localized taxes may be applicable on the shipment and would be charged by the recipient country outside of the EU27 which should be paid by the customer and these duties are not included in the shipping charges been charged on the order.

How do I know my custom duty charges? Chevron down icon Chevron up icon

The amount of duty payable varies greatly depending on the imported goods, the country of origin and several other factors like the total invoice amount or dimensions like weight, and other such criteria applicable in your country.

For example:

  • If you live in Mexico, and the declared value of your ordered items is over $ 50, for you to receive a package, you will have to pay additional import tax of 19% which will be $ 9.50 to the courier service.
  • Whereas if you live in Turkey, and the declared value of your ordered items is over € 22, for you to receive a package, you will have to pay additional import tax of 18% which will be € 3.96 to the courier service.
How can I cancel my order? Chevron down icon Chevron up icon

Cancellation Policy for Published Printed Books:

You can cancel any order within 1 hour of placing the order. Simply contact customercare@packt.com with your order details or payment transaction id. If your order has already started the shipment process, we will do our best to stop it. However, if it is already on the way to you then when you receive it, you can contact us at customercare@packt.com using the returns and refund process.

Please understand that Packt Publishing cannot provide refunds or cancel any order except for the cases described in our Return Policy (i.e. Packt Publishing agrees to replace your printed book because it arrives damaged or material defect in book), Packt Publishing will not accept returns.

What is your returns and refunds policy? Chevron down icon Chevron up icon

Return Policy:

We want you to be happy with your purchase from Packtpub.com. We will not hassle you with returning print books to us. If the print book you receive from us is incorrect, damaged, doesn't work or is unacceptably late, please contact Customer Relations Team on customercare@packt.com with the order number and issue details as explained below:

  1. If you ordered (eBook, Video or Print Book) incorrectly or accidentally, please contact Customer Relations Team on customercare@packt.com within one hour of placing the order and we will replace/refund you the item cost.
  2. Sadly, if your eBook or Video file is faulty or a fault occurs during the eBook or Video being made available to you, i.e. during download then you should contact Customer Relations Team within 14 days of purchase on customercare@packt.com who will be able to resolve this issue for you.
  3. You will have a choice of replacement or refund of the problem items.(damaged, defective or incorrect)
  4. Once Customer Care Team confirms that you will be refunded, you should receive the refund within 10 to 12 working days.
  5. If you are only requesting a refund of one book from a multiple order, then we will refund you the appropriate single item.
  6. Where the items were shipped under a free shipping offer, there will be no shipping costs to refund.

On the off chance your printed book arrives damaged, with book material defect, contact our Customer Relation Team on customercare@packt.com within 14 days of receipt of the book with appropriate evidence of damage and we will work with you to secure a replacement copy, if necessary. Please note that each printed book you order from us is individually made by Packt's professional book-printing partner which is on a print-on-demand basis.

What tax is charged? Chevron down icon Chevron up icon

Currently, no tax is charged on the purchase of any print book (subject to change based on the laws and regulations). A localized VAT fee is charged only to our European and UK customers on eBooks, Video and subscriptions that they buy. GST is charged to Indian customers for eBooks and video purchases.

What payment methods can I use? Chevron down icon Chevron up icon

You can pay with the following card types:

  1. Visa Debit
  2. Visa Credit
  3. MasterCard
  4. PayPal
What is the delivery time and cost of print books? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela