Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Hands-On Image Generation with TensorFlow
Hands-On Image Generation with TensorFlow

Hands-On Image Generation with TensorFlow: A practical guide to generating images and videos using deep learning

Arrow left icon
Profile Icon Soon Yau Cheong
Arrow right icon
Free Trial
Full star icon Full star icon Full star icon Full star icon Half star icon 4.7 (6 Ratings)
Paperback Dec 2020 306 pages 1st Edition
eBook
Mex$631.99 Mex$902.99
Paperback
Mex$1128.99
Subscription
Free Trial
Arrow left icon
Profile Icon Soon Yau Cheong
Arrow right icon
Free Trial
Full star icon Full star icon Full star icon Full star icon Half star icon 4.7 (6 Ratings)
Paperback Dec 2020 306 pages 1st Edition
eBook
Mex$631.99 Mex$902.99
Paperback
Mex$1128.99
Subscription
Free Trial
eBook
Mex$631.99 Mex$902.99
Paperback
Mex$1128.99
Subscription
Free Trial

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

Hands-On Image Generation with TensorFlow

Chapter 1: Getting Started with Image Generation Using TensorFlow

This book focuses on generating images and videos using unsupervised learning with TensorFlow 2. We assume that you have prior experience in using modern machine learning frameworks, such as TensorFlow 1, to build image classifiers with Convolutional Neural Networks (CNNs). Therefore, we will not be covering the basics of deep learning and CNNs. In this book, we will mainly use high level Keras APIs in TensorFlow 2, which is easy to learn. Nevertheless, we assume that you have no prior knowledge of image generation, and we will go through all that is needed to help you get started with it. The first aspect that you need to know about is probability distribution.

Probability distribution is fundamental in machine learning and it is especially important in generative models. Don't worry, I assure you that there aren't any complex mathematical equations in this chapter. We will first learn what probability is and how to use it to generate faces without using any neural networks or complex algorithms.

That's right: with the help of only basic math and NumPy code, you'll learn how to create a probabilistic generative model. Following that, you will learn how to use TensorFlow 2 to build a PixelCNN model in order to generate handwritten digits. This chapter is packed with useful information; you will need to read this chapter before jumping to any other chapters.

In this chapter, we are going to cover the following main topics:

  • Understanding probabilities
  • Generating faces with a probabilistic model
  • Building a PixelCNN model from scratch
Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Understand the different architectures for image generation, including autoencoders and GANs
  • Build models that can edit an image of your face, turn photos into paintings, and generate photorealistic images
  • Discover how you can build deep neural networks with advanced TensorFlow 2.x features

Description

The emerging field of Generative Adversarial Networks (GANs) has made it possible to generate indistinguishable images from existing datasets. With this hands-on book, you’ll not only develop image generation skills but also gain a solid understanding of the underlying principles. Starting with an introduction to the fundamentals of image generation using TensorFlow, this book covers Variational Autoencoders (VAEs) and GANs. You’ll discover how to build models for different applications as you get to grips with performing face swaps using deepfakes, neural style transfer, image-to-image translation, turning simple images into photorealistic images, and much more. You’ll also understand how and why to construct state-of-the-art deep neural networks using advanced techniques such as spectral normalization and self-attention layer before working with advanced models for face generation and editing. You'll also be introduced to photo restoration, text-to-image synthesis, video retargeting, and neural rendering. Throughout the book, you’ll learn to implement models from scratch in TensorFlow 2.x, including PixelCNN, VAE, DCGAN, WGAN, pix2pix, CycleGAN, StyleGAN, GauGAN, and BigGAN. By the end of this book, you'll be well versed in TensorFlow and be able to implement image generative technologies confidently.

Who is this book for?

The Hands-On Image Generation with TensorFlow book is for deep learning engineers, practitioners, and researchers who have basic knowledge of convolutional neural networks and want to learn various image generation techniques using TensorFlow 2.x. You’ll also find this book useful if you are an image processing professional or computer vision engineer looking to explore state-of-the-art architectures to improve and enhance images and videos. Knowledge of Python and TensorFlow will help you to get the best out of this book.

What you will learn

  • Train on face datasets and use them to explore latent spaces for editing new faces
  • Get to grips with swapping faces with deepfakes
  • Perform style transfer to convert a photo into a painting
  • Build and train pix2pix, CycleGAN, and BicycleGAN for image-to-image translation
  • Use iGAN to understand manifold interpolation and GauGAN to turn simple images into photorealistic images
  • Become well versed in attention generative models such as SAGAN and BigGAN
  • Generate high-resolution photos with Progressive GAN and StyleGAN

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Dec 24, 2020
Length: 306 pages
Edition : 1st
Language : English
ISBN-13 : 9781838826789
Category :
Languages :
Tools :

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Dec 24, 2020
Length: 306 pages
Edition : 1st
Language : English
ISBN-13 : 9781838826789
Category :
Languages :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just Mex$85 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just Mex$85 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total Mex$ 3,385.97
Hands-On Image Generation with TensorFlow
Mex$1128.99
Modern Computer Vision with PyTorch
Mex$1353.99
TensorFlow 2.0 Computer Vision Cookbook
Mex$902.99
Total Mex$ 3,385.97 Stars icon

Table of Contents

14 Chapters
Section 1: Fundamentals of Image Generation with TensorFlow Chevron down icon Chevron up icon
Chapter 1: Getting Started with Image Generation Using TensorFlow Chevron down icon Chevron up icon
Chapter 2: Variational Autoencoder Chevron down icon Chevron up icon
Chapter 3: Generative Adversarial Network Chevron down icon Chevron up icon
Section 2: Applications of Deep Generative Models Chevron down icon Chevron up icon
Chapter 4: Image-to-Image Translation Chevron down icon Chevron up icon
Chapter 5: Style Transfer Chevron down icon Chevron up icon
Chapter 6: AI Painter Chevron down icon Chevron up icon
Section 3: Advanced Deep Generative Techniques Chevron down icon Chevron up icon
Chapter 7: High Fidelity Face Generation Chevron down icon Chevron up icon
Chapter 8: Self-Attention for Image Generation Chevron down icon Chevron up icon
Chapter 9: Video Synthesis Chevron down icon Chevron up icon
Chapter 10: Road Ahead Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.7
(6 Ratings)
5 star 66.7%
4 star 33.3%
3 star 0%
2 star 0%
1 star 0%
Filter icon Filter
Top Reviews

Filter reviews by




syeduzzaman khan Mar 01, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
The book is well written. The author explained step by step of Deep learning implementation using Python and TensorFlow library. The GAN implementation requires a lot of effort from the scratch. But if you follow the book, you can save a your learning time and model building time. I recommend to buy this book.
Amazon Verified review Amazon
MLEngineer Feb 28, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Disclaimer: The publisher asked me to review the book and gave me a review copy. This represents my opinion on the book.The book is well outlined, organized, and easy to use. I read about and implemented, with the help of the book, the Variational Autoencoder to explore a representation/generation space of data at work. As a practical person I liked the book a lot.The book is a great quickstart into representation with neural networks. (I also read it more deeply at times and it is great for that as well. I myself have experience with high-throughput large scale autoencoders with TensorFlow and building Facial Recognition applications. I appreciated this book a lot.)
Amazon Verified review Amazon
BB Mar 08, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Clean explanation of the most important techniques! Even advanced topics like StyleGAN were explained very well!
Amazon Verified review Amazon
Susie Jun 25, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book is a simple cookbook approach to building projects with VAEs and GANs. The book comes along with actual TensorFlow (python) code samples, in the form of Jupyter Notebooks (.ipynb). So, it is very helpful to read through the material and quickly work on simple GAN projects. Initial chapters explain concepts in brief as expected and then starts discussing more complex approaches in later chapters. This book is however low on the math behind GANs and does not discuss how to debug GANs when they don't work.Note: Advanced chapters in this book present complex projects which require multi-GPU systems! I'm yet to get to those projects at the time of this review.
Amazon Verified review Amazon
Vince S. Feb 07, 2021
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
The author provided me a free copy and asked me to write a review here.I think overall it is a decent book. It covered most of the state of the art algorithms. Also it strike the right balance of the algorithm intuition and implementation details. There is a complimentary github comes with this book, which is very nice. The code shown in the book is mostly written in tensorflow 2 or keras. I think this book is more like a technical handbook covering many dots rather than a textbook built you foundation and insights.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.