So far, we have seen all the concepts related to parallel programming using CUDA and how it can leverage the GPU for acceleration. From this chapter on, we will try to use the concept of parallel programming in CUDA for computer vision applications. Though we have worked on matrices, we have not worked on actual images. Basically, working on images is similar to manipulation of two-dimensional matrices. We will not develop the entire code from scratch for computer vision applications in CUDA, but we will use the popular computer vision library that is called OpenCV. Though this book assumes that the reader has some familiarity with working with OpenCV, this chapter revises the concepts of using OpenCV in C++. This chapter describes the installation of the OpenCV library with CUDA support on Windows and Ubuntu. Then it describes how...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine