Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Game Physics Cookbook

You're reading from   Game Physics Cookbook Discover over 100 easy-to-follow recipes to help you implement efficient game physics and collision detection in your games

Arrow left icon
Product type Paperback
Published in Mar 2017
Publisher Packt
ISBN-13 9781787123663
Length 480 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Gabor Szauer Gabor Szauer
Author Profile Icon Gabor Szauer
Gabor Szauer
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Vectors FREE CHAPTER 2. Matrices 3. Matrix Transformations 4. 2D Primitive Shapes 5. 2D Collisions 6. 2D Optimizations 7. 3D Primitive Shapes 8. 3D Point Tests 9. 3D Shape Intersections 10. 3D Line Intersections 11. Triangles and Meshes 12. Models and Scenes 13. Camera and Frustum 14. Constraint Solving 15. Manifolds and Impulses 16. Springs and Joints A. Advanced Topics Index

Matrix definition


A matrix is a grid of numbers, represented by a bold capital letter. The number of rows in a matrix is represented by i; the number of columns is represented by j.

For example, in a 3 X 2 matrix, i would be 3 and j would be 2. This 3 X 2 matrix looks like this:

Matrices can be of any dimension; in video games, we tend to use 2 X 2, 3 X 3, and 4 X 4 matrices. If a matrix has the same number of rows and columns, it is called a square matrix. In this book, we're going to be working mostly with square matrices.

Individual elements of the matrix are indexed with subscripts. For example, refers to the element in row 1, column 2 of the matrix M.

Getting ready

We are going to implement a 2 X 2, 3 X 3, and 4 X 4 matrix. Internally, each matrix will be represented as a linear array of memory. Much like vectors, we will use an anonymous union to support a variety of access patterns. Pay attention to how the indexing operator is overridden, matrix indices in code start at 0, not 1. This...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime