Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Functional Python Programming

You're reading from   Functional Python Programming Discover the power of functional programming, generator functions, lazy evaluation, the built-in itertools library, and monads

Arrow left icon
Product type Paperback
Published in Apr 2018
Publisher Packt
ISBN-13 9781788627061
Length 408 pages
Edition 2nd Edition
Languages
Arrow right icon
Toc

Table of Contents (18) Chapters Close

Preface 1. Understanding Functional Programming FREE CHAPTER 2. Introducing Essential Functional Concepts 3. Functions, Iterators, and Generators 4. Working with Collections 5. Higher-Order Functions 6. Recursions and Reductions 7. Additional Tuple Techniques 8. The Itertools Module 9. More Itertools Techniques 10. The Functools Module 11. Decorator Design Techniques 12. The Multiprocessing and Threading Modules 13. Conditional Expressions and the Operator Module 14. The PyMonad Library 15. A Functional Approach to Web Services 16. Optimizations and Improvements 17. Other Books You May Enjoy

Simple numerical recursions

We can consider all numeric operations to be defined by recursions. For more details, read about the Peano axioms that define the essential features of numbers at: http://en.wikipedia.org/wiki/Peano_axioms.

From these axioms, we can see that addition is defined recursively using more primitive notions of the next number, or successor of a number, n, .

To simplify the presentation, we'll assume that we can define a predecessor function, , such that , as long as . This formalizes the idea that a number is the successor of the number's predecessor. 

Addition between two natural numbers could be defined recursively as follows:

If we use the more common  and  instead of  and , we can see that .

This translates neatly into Python, as shown in the following command snippet:

def add(a: int...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image