Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning with TensorFlow

You're reading from   Deep Learning with TensorFlow Explore neural networks with Python

Arrow left icon
Product type Paperback
Published in Apr 2017
Publisher Packt
ISBN-13 9781786469786
Length 320 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (4):
Arrow left icon
Md. Rezaul Karim Md. Rezaul Karim
Author Profile Icon Md. Rezaul Karim
Md. Rezaul Karim
Ahmed Menshawy Ahmed Menshawy
Author Profile Icon Ahmed Menshawy
Ahmed Menshawy
Giancarlo Zaccone Giancarlo Zaccone
Author Profile Icon Giancarlo Zaccone
Giancarlo Zaccone
Fabrizio Milo Fabrizio Milo
Author Profile Icon Fabrizio Milo
Fabrizio Milo
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Getting Started with Deep Learning FREE CHAPTER 2. First Look at TensorFlow 3. Using TensorFlow on a Feed-Forward Neural Network 4. TensorFlow on a Convolutional Neural Network 5. Optimizing TensorFlow Autoencoders 6. Recurrent Neural Networks 7. GPU Computing 8. Advanced TensorFlow Programming 9. Advanced Multimedia Programming with TensorFlow 10. Reinforcement Learning

FrozenLake-v0 implementation problem

Here we report a basic Q-learning implementation for the FrozenLake-v0 problem.

Import the following two basic libraries:

import gym 
import numpyasnp

Then, we load the FrozenLake-v0 environment:

environment = gym.make('FrozenLake-v0')

Then, we build the Q-learning table; it has the dimensions SxA, where S is the dimension of the observation space, S, while A is the dimension of the action space, A:

S = environment.observation_space.n 
A = environment.action_space.n

The FrozenLake environment provides a state for each block, and four actions (that is, the four directions of movement), giving us a 16x4 table of Q-values to initialize:

Q = np.zeros([S,A])

Then, we define the a parameter for the training rule and the discount g factor:

alpha = .85 
gamma = .99

We fix the total number of episodes (trials):

num_episodes = 2000

Then, we initialize the rList, where we&apos...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image