Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Dancing with Qubits

You're reading from   Dancing with Qubits From qubits to algorithms, embark on the quantum computing journey shaping our future

Arrow left icon
Product type Paperback
Published in Mar 2024
Publisher Packt
ISBN-13 9781837636754
Length 684 pages
Edition 2nd Edition
Arrow right icon
Author (1):
Arrow left icon
Robert S. Sutor Robert S. Sutor
Author Profile Icon Robert S. Sutor
Robert S. Sutor
Arrow right icon
View More author details
Toc

Table of Contents (26) Chapters Close

Preface I Foundations
Why Quantum Computing FREE CHAPTER They’re Not Old, They’re Classics More Numbers Than You Can Imagine Planes and Circles and Spheres, Oh My Dimensions 6 What Do You Mean “Probably”? II Quantum Computing
One Qubit Two Qubits, Three Wiring Up the Circuits From Circuits to Algorithms Getting Physical III Advanced Topics
Considering NISQ Algorithms Introduction to Quantum Machine Learning Questions about the Future Afterword
A Quick Reference B Notices C Production Notes Other Books You May Enjoy
References
Index
Appendices

1.2 I’m awake!

What if we could do chemistry inside a computer instead of in a test tube or beaker in the laboratory? What if running a new experiment was as simple as running an app and completing it in a few seconds?

For this to work, we would want it to happen with full fidelity. The atoms and molecules as modeled in the computer should behave exactly like they do in the test tube. The chemical reactions in the physical world would have precise computational analogs. We would need a fully faithful simulation. simulation

If we could do this at scale, we might be able to compute the molecules we want and need. These might be for new materials for shampoos or even alloys for cars and airplanes. Perhaps we could more efficiently discover medicines that we customize for your exact physiology. Maybe we could get better insight into how proteins fold, thereby understanding their function and possibly creating custom enzymes to change our body chemistry positively.

Is this plausible? We have massive supercomputers that can run all kinds of simulations. Can we model molecules in the above ways today?

Let’s start with C8H10N4O2 – 1,3,7-Trimethylxanthine. This is a fancy name for a molecule that millions of people worldwide enjoy every day: caffeine. Figure 1.3 shows its structure. caffeine

 Figure 1.3: The caffeine molecule

An 8-ounce cup of coffee contains approximately 95 mg of caffeine, which translates to roughly 2.95 × 1020 molecules. Written out, this is

295,000,000,000,000,000,000 molecules.

A 12-ounce can of a popular cola drink has 32 mg of caffeine, the diet version has 42 mg, and energy drinks often have about 77 mg. 134

Exercise 1.1

How many molecules of caffeine do you consume a day?

These numbers are large because we are counting physical objects in our universe, which we know is very big. Scientists estimate, for example, that there are between 1049 and 1050 atoms in our planet alone. 82

To put these values in context, one thousand = 103, one million = 106, one billion = 109, and so on. A gigabyte of storage is one billion bytes, and a terabyte is 1012 bytes.

Returning to the question I posed at the beginning of this section, can we model caffeine exactly in a computer? We don’t have to model the huge number of caffeine molecules in a cup of coffee, but can we fully represent a single molecule at a single instant?

Caffeine is a small molecule and contains protons, neutrons, and electrons. In particular, if we look at the energy configuration that determines the structure of the molecule and the bonds that hold it all together, the amount of information to describe this is staggering. In particular, the number of bits, the 0s and 1s, needed is approximately 1048:

10,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 .

From what I said above, this is comparable to 1% to 10% of the number of atoms in the Earth.

This is just one molecule! Yet somehow, nature manages to deal quite effectively with all this information. It handles the single caffeine molecule, to all those in your coffee, tea, or soft drink, to every other molecule that makes up you and the world around you.

How does it do this? We don’t know! Of course, there are theories, and they live at the intersection of physics and philosophy. 133 We do not need to understand it thoroughly to try to harness its capabilities.

We have no hope of providing enough traditional storage to hold this much information. Our dream of exact representation appears to be dashed. This is what Richard Feynman (Figure 1.4) meant in his quote at the beginning of this chapter: “Nature isn’t classical.” Feynman, Richard

 Figure 1.4: Richard Feynman at the California Institute of Technology in 1959

However, 160 qubits (quantum bits) could hold 2160 ≈ 1.46 × 1048 bits while the qubits are involved in a computation. To be clear, I’m not saying how we would get all the data into those qubits, and I’m also not saying how many more we would need to do something interesting with the information. It does give us hope, however. We look at some ways of encoding data in qubits in section 13.2.

In the classical case, we will never fully represent the caffeine molecule. In the future, with enough very high-quality qubits in a powerful enough quantum computing system, we may be able to perform chemistry in a computer.

To learn more

Quantum chemistry is not an area of science in which you can say a few words and easily make clear how we might eventually use quantum computers to compute molecular properties and protein folding configurations, for example. Nevertheless, the caffeine example above is an example of quantum simulation. chemistry

For an excellent survey of the history and state of the art of quantum computing applied to chemistry as of 2019, see Cao et al. 36 For the specific problem of understanding how to scale quantum simulations of molecules and the crossover from High-Performance Computers (HPC), see Kandala et al. 119

You have been reading a chapter from
Dancing with Qubits - Second Edition
Published in: Mar 2024
Publisher: Packt
ISBN-13: 9781837636754
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime