Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Cardboard VR Projects for Android

You're reading from   Cardboard VR Projects for Android Develop mobile virtual reality apps using the native Google Cardboard SDK for Android

Arrow left icon
Product type Paperback
Published in May 2016
Publisher
ISBN-13 9781785887871
Length 386 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Jonathan Linowes Jonathan Linowes
Author Profile Icon Jonathan Linowes
Jonathan Linowes
Matt Schoen Matt Schoen
Author Profile Icon Matt Schoen
Matt Schoen
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Virtual Reality for Everyone FREE CHAPTER 2. The Skeleton Cardboard Project 3. Cardboard Box 4. Launcher Lobby 5. RenderBox Engine 6. Solar System 7. 360-Degree Gallery 8. 3D Model Viewer 9. Music Visualizer Index

A solid color lighted sphere


We are going to start by rendering our sphere in a solid color but with lighted shading. As usual, we start by writing the shader functions that, among other things, define the program variables they will need from the Material that uses it. Then, we'll define the SolidColorLightingMaterial class and add it to the Sphere component.

Solid color lighting shaders

In the previous chapters, where we used shaders with lighting, we did the lighting calculations in the vertex shader. That's simpler (and faster), but transitioning the calculations to the fragment shader yields better results. The reason is that, in the vertex shader, you only have one normal value to compare against the light direction. In the fragment, all vertex attributes are interpolated, meaning that the normal value at a given point between two vertices will be some point in between their two normals. When this is the case, you see a smooth gradient across the triangle face, rather than localized...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image