Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Big Data Analysis with Python
Big Data Analysis with Python

Big Data Analysis with Python: Combine Spark and Python to unlock the powers of parallel computing and machine learning

Arrow left icon
Profile Icon Marin Profile Icon VK Profile Icon Shukla
Arrow right icon
Free Trial
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1 (1 Ratings)
Paperback Apr 2019 276 pages 1st Edition
eBook
Mex$179.99 Mex$541.99
Paperback
Mex$676.99
Subscription
Free Trial
Arrow left icon
Profile Icon Marin Profile Icon VK Profile Icon Shukla
Arrow right icon
Free Trial
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1 (1 Ratings)
Paperback Apr 2019 276 pages 1st Edition
eBook
Mex$179.99 Mex$541.99
Paperback
Mex$676.99
Subscription
Free Trial
eBook
Mex$179.99 Mex$541.99
Paperback
Mex$676.99
Subscription
Free Trial

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

Big Data Analysis with Python

Chapter 2. Statistical Visualizations

Note

Learning Objectives

We will start our journey by understanding the power of Python to manipulate and visualize data, creating useful analysis.

By the end of this chapter, you will be able to:

  • Use graphs for data analysis

  • Create graphs of various types

  • Change graph parameters such as color, title, and axis

  • Export graphs for presentation, printing, and other uses

Note

In this chapter, we will illustrate how the students can generate visualizations with Matplotlib and Seaborn.

Introduction


In the last chapter, we learned that the libraries that are most commonly used for data science work with Python. Although they are not big data libraries per se, the libraries of the Python Data Science Stack (NumPy, Jupyter, IPython, Pandas, and Matplotlib) are important in big data analysis.

As we will demonstrate in this chapter, no analysis is complete without visualizations, even with big datasets, so knowing how to generate images and graphs from data in Python is relevant for our goal of big data analysis. In the subsequent chapters, we will demonstrate how to process large volumes of data and aggregate it to visualize it using Python tools.

There are several visualization libraries for Python, such as Plotly, Bokeh, and others. But one of the oldest, most flexible, and most used is Matplotlib. But before going through the details of creating a graph with Matplotlib, let's first understand what kinds of graphs are relevant for analysis.

Types of Graphs and When to Use Them


Every analysis, whether on small or large datasets, involves a descriptive statistics step, where the data is summarized and described by statistics such as mean, median, percentages, and correlation. This step is commonly the first step in the analysis workflow, allowing a preliminary understanding of the data and its general patterns and behaviors, providing grounds for the analyst to formulate hypotheses, and directing the next steps in the analysis. Graphs are powerful tools to aid in this step, enabling the analyst to visualize the data, create new views and concepts, and communicate them to a larger audience.

There is a vast amount of literature on statistics about visualizing information. The classic book, Envisioning Information, by Edward Tufte, demonstrates beautiful and useful examples of how to present information in graphical form. In another book, The Visual Display of Quantitative Information, Tufte enumerates a few qualities that a graph...

Components of a Graph


Each graph has a set of common components that can be adjusted. The names that Matplotlib uses for these components are demonstrated in the following graph:

Figure 2.3: Components of a graph

The components of a graph are as follows:

  • Figure: The base of the graph, where all the other components are drawn.

  • Axis: Contains the figure elements and sets the coordinate system.

  • Title: The title gives the graph its name.

  • X-axis label: The name of the x-axis, usually named with the units.

  • Y-axis label: The name of the y-axis, usually named with the units.

  • Legend: A description of the data plotted in the graph, allowing you to identify the curves and points in the graph.

  • Ticks and tick labels: They indicate the points of reference on a scale for the graph, where the values of the data are. The labels indicate the values themselves.

  • Line plots: These are the lines that are plotted with the data.

  • Markers: Markers are the pictograms that mark the point data.

  • Spines: The lines that delimit the...

Seaborn


Seaborn (https://seaborn.pydata.org/) is part of the PyData family of tools and is a visualization library based on Matplotlib with the goal of creating statistical graphs more easily. It can operate directly on DataFrames and series, doing aggregations and mapping internally. Seaborn uses color palettes and styles to make visualizations consistent and more informative. It also has functions that can calculate some statistics, such as regression, estimation, and errors. Some specialized plots, such as violin plots and multi-facet plots, are also easy to create with Seaborn.

Which Tool Should Be Used?


Seaborn tries to make the creation of some common analysis graphs easier than using Matplotlib directly. Matplotlib can be considered more low-level than Seaborn, and although this makes it a bit more cumbersome and verbose, it gives analysts much more flexibility. Some graphs, which with Seaborn are created with one function call, would take several lines of code to achieve using Matplotlib.

There is no rule to determine whether an analyst should use only the pandas plotting interface, Matplotlib directly, or Seaborn. Analysts should keep in mind the visualization requirements and the level of configuration required to create the desired graph.

Pandas' plotting interface is easier to use but is more constrained and limited. Seaborn has several graph patterns ready to use, including common statistical graphs such as pair plots and boxplots, but requires that the data is formatted into a tidy format and is more opinionated on how the graphs should look. Matplotlib...

Types of Graphs


The first type of graph that we will present is the line graph or line chart. A line graph displays data as a series of interconnected points on two axes (x and y), usually Cartesian, ordered commonly by the x-axis. Line charts are useful for demonstrating trends in data, such as in time series, for example.

A graph related to the line graph is the scatter plot. A scatter plot represents the data as points in Cartesian coordinates. Usually, two variables are demonstrated in this graph, although more information can be conveyed if the data is color-coded or size-coded by category, for example. Scatter plots are useful for showing the relationship and possible correlation between variables.

Histograms are useful for representing the distribution of data. Unlike the two previous examples, histograms show only one variable, usually on the x-axis, while the y-axis shows the frequency of occurrence of the data. The process of creating a histogram is a bit more involved than the line...

Pandas DataFrames and Grouped Data


As we learned in the previous chapter, when analyzing data and using Pandas to do so, we can use the plot functions from Pandas or use Matplotlib directly. Pandas uses Matplotlib under the hood, so the integration is great. Depending on the situation, we can either plot directly from pandas or create a figure and an axes with Matplotlib and pass it to pandas to plot. For example, when doing a GroupBy, we can separate the data into a GroupBy key. But how can we plot the results of GroupBy? We have a few approaches at our disposal. We can, for example, use pandas directly, if the DataFrame is already in the right format:

Note

The following code is a sample and will not get executed.

fig, ax = plt.subplots()
df = pd.read_csv('data/dow_jones_index.data')
df[df.stock.isin(['MSFT', 'GE', 'PG'])].groupby('stock')['volume'].plot(ax=ax)

Or we can just plot each GroupBy key on the same plot:

fig, ax = plt.subplots()
df.groupby('stock').volume.plot(ax=ax)

For the following...

Changing Plot Design: Modifying Graph Components


So far, we've looked at the main graphs used in analyzing data, either directly or grouped, for comparison and trend visualization. But one thing that we can see is that the design of each graph is different from the others, and we don't have basic things such as a title and legends.

We've learned that a graph is composed of several components, such as a graph title, x and y labels, and so on. When using Seaborn, the graphs already have x and y labels, with the names of the columns. With Matplotlib, we don't have this. These changes are not only cosmetic.

The understanding of a graph can be greatly improved when we adjust things such as line width, color, and point size too, besides labels and titles. A graph must be able to stand on its own, so title, legends, and units are paramount. How can we apply the concepts that we described previously to make good, informative graphs on Matplotlib and Seaborn?

The possible number of ways that plots can...

Exporting Graphs


After generating our visualizations and configuring the details, we can export our graphs to a hard copy format, such as PNG, JPEG, or SVG. If we are using the interactive API in the notebook, we can just call the savefig function over the pyplot interface, and the last generated graph will be exported to the file:

df.plot(kind='scatter', x='weight', y='horsepower', figsize=(20,10))
plt.savefig('horsepower_weight_scatter.png')

Figure 2.26: Exporting the graphs

All plot configurations will be carried to the plot. To export a graph when using the object-oriented API, we can call savefig from the figure:

fig, ax = plt.subplots()
df.plot(kind='scatter', x='weight', y='horsepower', figsize=(20,10), ax=ax)
fig.savefig('horsepower_weight_scatter.jpg')

Figure 2.27: Saving the graph

We can change some parameters for the saved image:

  • dpi: Adjust the saved image resolution.

  • facecolor: The face color of the figure.

  • edgecolor: The edge color of the figure, around the graph.

  • format: Usually PNG...

Summary


In this chapter, we have seen the importance of creating meaningful and interesting visualizations when analyzing data. A good data visualization can immensely help the analyst's job, representing data in a way that can reach larger audiences and explain concepts that could be hard to translate into words or to represent with tables.

A graph, to be effective as a data visualization tool, must show the data, avoid distortions, make understanding large datasets easy, and have a clear purpose, such as description or exploration. The main goal of a graph is to communicate data, so the analyst must keep that in mind when creating a graph. A useful graph is more desirable than a beautiful one.

We demonstrated some kinds of graphs commonly used in analysis: the line graph, the scatter plot, the histogram, and the boxplot. Each graph has its purpose and application, depending on the data and the goal. We have also shown how to create graphs directly from Matplotlib, from pandas, or a combination...

Left arrow icon Right arrow icon

Key benefits

  • Get a hands-on, fast-paced introduction to the Python data science stack
  • Explore ways to create useful metrics and statistics from large datasets
  • Create detailed analysis reports with real-world data

Description

Processing big data in real time is challenging due to scalability, information inconsistency, and fault tolerance. Big Data Analysis with Python teaches you how to use tools that can control this data avalanche for you. With this book, you'll learn practical techniques to aggregate data into useful dimensions for posterior analysis, extract statistical measurements, and transform datasets into features for other systems. The book begins with an introduction to data manipulation in Python using pandas. You'll then get familiar with statistical analysis and plotting techniques. With multiple hands-on activities in store, you'll be able to analyze data that is distributed on several computers by using Dask. As you progress, you'll study how to aggregate data for plots when the entire data cannot be accommodated in memory. You'll also explore Hadoop (HDFS and YARN), which will help you tackle larger datasets. The book also covers Spark and explains how it interacts with other tools. By the end of this book, you'll be able to bootstrap your own Python environment, process large files, and manipulate data to generate statistics, metrics, and graphs.

Who is this book for?

Big Data Analysis with Python is designed for Python developers, data analysts, and data scientists who want to get hands-on with methods to control data and transform it into impactful insights. Basic knowledge of statistical measurements and relational databases will help you to understand various concepts explained in this book.

What you will learn

  • Use Python to read and transform data into different formats
  • Generate basic statistics and metrics using data on disk
  • Work with computing tasks distributed over a cluster
  • Convert data from various sources into storage or querying formats
  • Prepare data for statistical analysis, visualization, and machine learning
  • Present data in the form of effective visuals

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Apr 10, 2019
Length: 276 pages
Edition : 1st
Language : English
ISBN-13 : 9781789955286
Category :
Languages :
Concepts :
Tools :

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Apr 10, 2019
Length: 276 pages
Edition : 1st
Language : English
ISBN-13 : 9781789955286
Category :
Languages :
Concepts :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just Mex$85 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just Mex$85 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total Mex$ 2,113.97
Data Wrangling with Python
Mex$902.99
Big Data Analysis with Python
Mex$676.99
Hands-On Big Data Analytics with PySpark
Mex$533.99
Total Mex$ 2,113.97 Stars icon
Banner background image

Table of Contents

8 Chapters
The Python Data Science Stack Chevron down icon Chevron up icon
Statistical Visualizations Chevron down icon Chevron up icon
Working with Big Data Frameworks Chevron down icon Chevron up icon
Diving Deeper with Spark Chevron down icon Chevron up icon
Handling Missing Values and Correlation Analysis Chevron down icon Chevron up icon
Exploratory Data Analysis Chevron down icon Chevron up icon
Reproducibility in Big Data Analysis Chevron down icon Chevron up icon
Creating a Full Analysis Report Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1
(1 Ratings)
5 star 0%
4 star 0%
3 star 0%
2 star 0%
1 star 100%
RLKurtz Jul 14, 2020
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1
This book is a broken mess.The sections on theory, for example the discussion on the which graph to use where in chapter 2, are fine.But then, suddenly, you are asked to do activities by yourself which the textbook hasn't prepared you for and you have to resort to the appendices to see how it should be done. Sometimes (e.g. activity 7) examples just doesn't work - the code is completely broken and the book doesn't prepare you for how to resolve it. No amount of googling is able to put you on the right track either. Exercise 23 just ends in a "type error" as lambda takes 0 positional arguments but 1 was given which, if the forums are to be believed, is because the function is not longer supported by Python. Next your are doing exercises and can follow along the examples in the chapter and all is fine again, but then functionality is introduced which isn't explained and you end up parroting the text. The text makes you install Hadoop, which with the problem solving took me 3 hours, and then moves unceremoniously on to Spark, which with the errors in the text is its own can of worms without ever going into Hadoop at all.This books just comes across as poorly edited and with little to none quality control resulting in frustration. Give it a pass.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.