Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Bayesian Analysis with Python

You're reading from   Bayesian Analysis with Python A practical guide to probabilistic modeling

Arrow left icon
Product type Paperback
Published in Jan 2024
Publisher Packt
ISBN-13 9781805127161
Length 394 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Osvaldo Martin Osvaldo Martin
Author Profile Icon Osvaldo Martin
Osvaldo Martin
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface
1. Chapter 1 Thinking Probabilistically FREE CHAPTER 2. Chapter 2 Programming Probabilistically 3. Chapter 3 Hierarchical Models 4. Chapter 4 Modeling with Lines 5. Chapter 5 Comparing Models 6. Chapter 6 Modeling with Bambi 7. Chapter 7 Mixture Models 8. Chapter 8 Gaussian Processes 9. Chapter 9 Bayesian Additive Regression Trees 10. Chapter 10 Inference Engines 11. Chapter 11 Where to Go Next 12. Bibliography
13. Other Books You May Enjoy
14. Index

5.9 Summary

In this chapter, we have seen how to compare models using posterior predictive checks, information criteria, approximated cross-validation, and Bayes factors.

Posterior predictive check is a general concept and practice that can help us understand how well models are capturing different aspects of the data. We can perform posterior predictive checks with just one model or with many models, and thus we can use it as a method for model comparison. Posterior predictive checks are generally done via visualizations, but numerical summaries like Bayesian values can also be helpful.

Good models have a good balance between complexity and predictive accuracy. We exemplified this feature by using the classical example of polynomial regression. We discussed two methods to estimate the out-of-sample accuracy without leaving data aside: cross-validation and information criteria. From a practical point of view, information criteria is a family of theoretical methods looking to balance two...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime