Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Azure Data and AI Architect Handbook

You're reading from   Azure Data and AI Architect Handbook Adopt a structured approach to designing data and AI solutions at scale on Microsoft Azure

Arrow left icon
Product type Paperback
Published in Jul 2023
Publisher Packt
ISBN-13 9781803234861
Length 284 pages
Edition 1st Edition
Tools
Arrow right icon
Authors (2):
Arrow left icon
Olivier Mertens Olivier Mertens
Author Profile Icon Olivier Mertens
Olivier Mertens
Breght Van Baelen Breght Van Baelen
Author Profile Icon Breght Van Baelen
Breght Van Baelen
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Part 1: Introduction to Azure Data Architect
2. Chapter 1: Introduction to Data Architectures FREE CHAPTER 3. Chapter 2: Preparing for Cloud Adoption 4. Part 2: Data Engineering on Azure
5. Chapter 3: Ingesting Data into the Cloud 6. Chapter 4: Transforming Data on Azure 7. Chapter 5: Storing Data for Consumption 8. Part 3: Data Warehousing and Analytics
9. Chapter 6: Data Warehousing 10. Chapter 7: The Semantic Layer 11. Chapter 8: Visualizing Data Using Power BI 12. Chapter 9: Advanced Analytics Using AI 13. Part 4: Data Security, Governance, and Compliance
14. Chapter 10: Enterprise-Level Data Governance and Compliance 15. Chapter 11: Introduction to Data Security 16. Index 17. Other Books You May Enjoy

Summary

In this chapter, we first discussed how to extract value from your data by asking the right analytical questions. Questions may increase in complexity from descriptive, diagnostic, and predictive to prescriptive but may also hold more value. A complexity-value matrix is necessary to prioritize data projects and build a data roadmap. A crucial thing to remember is to capture data as soon as possible, even if you don’t have a data strategy or roadmap yet. All data that you do not capture now cannot be used in the future to extract value from. Next, we introduced a reference architecture diagram. Over time, you will get familiar with every component of the diagram and how they interact with each other.

Four layers of cloud architectures were explained. The ingestion layer is used to pull data into the central cloud data platform. The storage layer is capable of holding massive amounts of data, often in a tiered system, where data gets more business-ready as it moves through the tiers. In the serving layer, the data warehouse is located, which holds data with a strictly enforced schema and is optimized for analytical workloads. Lastly, the consumption layer allows end users and external systems to consume the data in reports and dashboards or to be used in other applications.

Some components of the data platform span across multiple layers. Data orchestration and processing refers to data pipelines that ingest data into the cloud, move data from one place to another, and orchestrate data transformations. Advanced analytics leverages Azure’s many pre-trained ML models and a data science environment to perform complex calculations and provide meaningful predictions. Data governance tools bring data asset compliance, flexible access control, data lineage, and overall insights into the entire data estate. Impeccable security of individual components as well as the integrations between them takes away many of the worries regarding harmful actions being made by third parties. Finally, the extensive monitoring capabilities in Azure allow us to get insights into the health and performance of the processes and data storage in the platform.

Finally, we discussed the drawbacks that on-premises architectures face, such as scalability, cost optimization, agility, and flexibility. These challenges are often conveniently dealt with by leveraging the benefits of cloud-based approaches.

In the next chapter, we will look at two Microsoft frameworks that ease the move to the cloud.

You have been reading a chapter from
Azure Data and AI Architect Handbook
Published in: Jul 2023
Publisher: Packt
ISBN-13: 9781803234861
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image