Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Artificial Intelligence for Cybersecurity

You're reading from   Artificial Intelligence for Cybersecurity Develop AI approaches to solve cybersecurity problems in your organization

Arrow left icon
Product type Paperback
Published in Oct 2024
Publisher Packt
ISBN-13 9781805124962
Length 358 pages
Edition 1st Edition
Arrow right icon
Authors (4):
Arrow left icon
Bojan Kolosnjaji Bojan Kolosnjaji
Author Profile Icon Bojan Kolosnjaji
Bojan Kolosnjaji
Apostolis Zarras Apostolis Zarras
Author Profile Icon Apostolis Zarras
Apostolis Zarras
Huang Xiao Huang Xiao
Author Profile Icon Huang Xiao
Huang Xiao
Peng Xu Peng Xu
Author Profile Icon Peng Xu
Peng Xu
Arrow right icon
View More author details
Toc

Table of Contents (27) Chapters Close

Preface 1. Part 1: Data-Driven Cybersecurity and AI FREE CHAPTER
2. Chapter 1: Big Data in Cybersecurity 3. Chapter 2: Automation in Cybersecurity 4. Chapter 3: Cybersecurity Data Analytics 5. Part 2: AI and Where It Fits In
6. Chapter 4: AI, Machine Learning, and Statistics - A Taxonomy 7. Chapter 5: AI Problems and Methods 8. Chapter 6: Workflow, Tools, and Libraries in AI Projects 9. Part 3: Applications of AI in Cybersecurity
10. Chapter 7: Malware and Network Intrusion Detection and Analysis 11. Chapter 8: User and Entity Behavior Analysis 12. Chapter 9: Fraud, Spam, and Phishing Detection 13. Chapter 10: User Authentication and Access Control 14. Chapter 11: Threat Intelligence 15. Chapter 12: Anomaly Detection in Industrial Control Systems 16. Chapter 13: Large Language Models and Cybersecurity 17. Part 4: Common Problems When Applying AI in Cybersecurity
18. Chapter 14: Data Quality and its Usage in the AI and LLM Era 19. Chapter 15: Correlation, Causation, Bias, and Variance 20. Chapter 16: Evaluation, Monitoring, and Feedback Loop 21. Chapter 17: Learning in a Changing and Adversarial Environment 22. Chapter 18: Privacy, Accountability, Explainability, and Trust – Responsible AI 23. Part 5: Final Remarks and Takeaways
24. Chapter 19: Summary 25. Index 26. Other Books You May Enjoy

Summary

In this chapter, we were on an educational journey into the realm of AML, beginning with an engaging introduction that not only presented the subject matter but also underscored its significance in today’s digital age. The motivation behind this exploration was clearly articulated, highlighting the urgent need for robust defenses in AI systems against increasingly sophisticated cyber threats. The chapter thoughtfully guided you through the nuanced setup of learning environments, where the spotlight was firmly on ensuring the security and integrity of AI models amid a landscape fraught with potential adversarial exploits.

As the narrative progressed, the chapter delved deeper into the core of adversarial threat modeling. Here, you were equipped with a detailed understanding of the attacker’s methodology, encompassing a meticulously crafted taxonomy of adversarial attacks. This section was particularly enlightening, offering you a clear framework for categorizing...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime