David Aronchick, Head of Open Source Machine Learning Strategy at Microsoft Azure
At Microsoft, PyTorch is being used in their language modeling service. Language modeling service uses state-of-the-art language models for both 1 P (first-party) and 3 P (third party). Microsoft explored a number of deep learning frameworks but was running into several issues. These included a slow transition from research to production, inconsistent and frequently changing APIs, and a trade-off between high-level ease-of-use and low-level flexibility.
To overcome these issues, in partnership with Facebook Microsoft built an internal language modeling toolkit on top of PyTorch. Using the native extensibility that PyTorch provided, Microsoft was able to build advanced/custom tasks and architecture. It also improved the onboarding of new users and was an active and inviting community. As a result of this work, Microsoft was able to scale the language modeling features to billions of words. It also led to intuitive, static, and consistent APIs which resulted in seamless migration from Language modeling toolkit v0.4 to 1.0. They also saw improvements in model sizes.
Microsoft have partnered with ics.ai to deliver conversational AI bots across the public sector in the UK. ICS.ai, based in Basingstoke, have trained their Microsoft AI driven chat bots to scale to the demands of large county councils, healthcare trusts and universities.
Cindy Chen, Senior machine learning Data Scientist at Airbnb
Airbnb has built a dialog assistant to integrate smart replies and enhance their customer experience. The core of their Dialog assistant for customer service at Airbnb is powered by PyTorch. They have built the smart replies recommendation model by treating it as a machine translation problem.
Airbnb is translating the customer's input message into agent responses by building a sequence to sequence model. They leverage PyTorch’s Open neural machine translation library to build the sequence to sequence model.
Using Pytorch has significantly sped up the Airbnb’s model development cycle as PyTorch provides them with state-of-the-art technologies such as various attention mechanisms and beam search.
Daniel Bozinov, Head of AI - Early clinical development informatics, Genentech
At Genentech, PyTorch is being used to develop personalized cancer medicine as well as for drug discovery and in cancer therapy.
For drug development, Genentech has built deep learning models for specific domains to make some predictions about the properties of molecules such as toxicity. They're also applying AI to come up with new cancer therapies. They identify unique molecules specific to cancer cells that are only produced by those cancer cells, potentially sensitizing the immune system to attack those cancer cells and basically treat them like an infection.
PyTorch has been their deep learning framework of choice because of features such as easier debugging, more flexible control structures, being natively pythonic, and it’s Dynamic graphs which yield in faster execution. Their model architecture is inspired by textual entailment in natural language processing. They use a partially recurrent neural network as well as a straightforward feed-forward network, combine the outputs of these two networks and predict the peptide binding.
Adrien Gaidon, Machine Learning Lead, Toyota Research Institute
Toyota developed a cutting-edge cloud platform for distributed deep learning on high-resolution sensory inputs, especially video. This was designed to add new driver support features to the cars.
PyTorch was instrumental in scaling up Toyota’s deep learning system because of features like simple API, integration with the global Python ecosystem, and overall a great user experience for fast exploration. It’s also fast for training on a very large scale. In addition to amping up TRI’s creativity and expertise, Pytorch has also amplified Toyota’s capabilities to iterate quickly from idea to real-world use cases. The team at TRI is excited for new Pytorch production features that will help them accelerate Toyota even further.
In this post, we have only summarized the talks. At F8, these researchers spoke in length about each of their company’s projects and how PyTorch has been instrumental in their growth. You can watch the full video on YouTube.
If you are inspired to build your PyTorch-based deep learning and machine learning models, we recommend you to go through our book PyTorch Deep Learning Hands-On.
Facebook releases PyTorch 1.3 with named tensors, PyTorch Mobile, 8-bit model quantization, and more
François Chollet, creator of Keras on TensorFlow 2.0 and Keras integration, tricky design decisions in Deep Learning, and more
PyTorch announces the availability of PyTorch Hub for improving machine learning research reproducibility