Implementing an Advanced CNN
It is important to be able to extend CNN models for image recognition so that we understand how to increase the depth of the network. This may increase the accuracy of our predictions if we have enough data. Extending the depth of CNN networks is done in a standard fashion: we just repeat the convolution, maxpool, ReLU series until we are satisfied with the depth. Many of the more accurate image recognition networks operate in this fashion.
Getting ready
In this recipe, we will implement a more advanced method of reading image data and use a larger CNN to do image recognition on the CIFAR10 dataset (https://www.cs.toronto.edu/~kriz/cifar.html). This dataset has 60,000 32x32 images that fall into exactly one of ten possible classes. The potential classes for the images are airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. You can also refer to the first bullet point of the See also section.
Most image datasets will be too large to fit into...