Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Simplify Big Data Analytics with Amazon EMR

You're reading from   Simplify Big Data Analytics with Amazon EMR A beginner's guide to learning and implementing Amazon EMR for building data analytics solutions

Arrow left icon
Product type Paperback
Published in Mar 2022
Publisher Packt
ISBN-13 9781801071079
Length 430 pages
Edition 1st Edition
Concepts
Arrow right icon
Author (1):
Arrow left icon
Sakti Mishra Sakti Mishra
Author Profile Icon Sakti Mishra
Sakti Mishra
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Section 1: Overview, Architecture, Big Data Applications, and Common Use Cases of Amazon EMR
2. Chapter 1: An Overview of Amazon EMR FREE CHAPTER 3. Chapter 2: Exploring the Architecture and Deployment Options 4. Chapter 3: Common Use Cases and Architecture Patterns 5. Chapter 4: Big Data Applications and Notebooks Available in Amazon EMR 6. Section 2: Configuration, Scaling, Data Security, and Governance
7. Chapter 5: Setting Up and Configuring EMR Clusters 8. Chapter 6: Monitoring, Scaling, and High Availability 9. Chapter 7: Understanding Security in Amazon EMR 10. Chapter 8: Understanding Data Governance in Amazon EMR 11. Section 3: Implementing Common Use Cases and Best Practices
12. Chapter 9: Implementing Batch ETL Pipeline with Amazon EMR and Apache Spark 13. Chapter 10: Implementing Real-Time Streaming with Amazon EMR and Spark Streaming 14. Chapter 11: Implementing UPSERT on S3 Data Lake with Apache Spark and Apache Hudi 15. Chapter 12: Orchestrating Amazon EMR Jobs with AWS Step Functions and Apache Airflow/MWAA 16. Chapter 13: Migrating On-Premises Hadoop Workloads to Amazon EMR 17. Chapter 14: Best Practices and Cost-Optimization Techniques 18. Other Books You May Enjoy

Working with AMIs and controlling cluster termination

In the previous section, we explained how EMR by default uses the Amazon Linux AMI for EMR and you have the option to create a custom AMI and use it while creating a cluster.

Now, in this section, we will dive deep into the default Amazon Linux AMI for EMR, custom AMI implementations, and how cluster termination works that you can configure as per your use case.

Working with AMIs

An AMI includes all the resources required to launch an EC2 instance. While launching an instance, you can specify the AMI it should be using. You can use the same AMI to launch multiple EC2 instances. If your EC2 instances need different configurations, then you can create instance-specific AMIs.

An AMI has the following components:

  • One or more Elastic Block Store (EBS) snapshots, or if the AMI is backed by an instance store, a template for the EC2 instance's root volume. This might include an operating system, applications...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image