Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Simplify Big Data Analytics with Amazon EMR

You're reading from   Simplify Big Data Analytics with Amazon EMR A beginner's guide to learning and implementing Amazon EMR for building data analytics solutions

Arrow left icon
Product type Paperback
Published in Mar 2022
Publisher Packt
ISBN-13 9781801071079
Length 430 pages
Edition 1st Edition
Concepts
Arrow right icon
Author (1):
Arrow left icon
Sakti Mishra Sakti Mishra
Author Profile Icon Sakti Mishra
Sakti Mishra
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Section 1: Overview, Architecture, Big Data Applications, and Common Use Cases of Amazon EMR
2. Chapter 1: An Overview of Amazon EMR FREE CHAPTER 3. Chapter 2: Exploring the Architecture and Deployment Options 4. Chapter 3: Common Use Cases and Architecture Patterns 5. Chapter 4: Big Data Applications and Notebooks Available in Amazon EMR 6. Section 2: Configuration, Scaling, Data Security, and Governance
7. Chapter 5: Setting Up and Configuring EMR Clusters 8. Chapter 6: Monitoring, Scaling, and High Availability 9. Chapter 7: Understanding Security in Amazon EMR 10. Chapter 8: Understanding Data Governance in Amazon EMR 11. Section 3: Implementing Common Use Cases and Best Practices
12. Chapter 9: Implementing Batch ETL Pipeline with Amazon EMR and Apache Spark 13. Chapter 10: Implementing Real-Time Streaming with Amazon EMR and Spark Streaming 14. Chapter 11: Implementing UPSERT on S3 Data Lake with Apache Spark and Apache Hudi 15. Chapter 12: Orchestrating Amazon EMR Jobs with AWS Step Functions and Apache Airflow/MWAA 16. Chapter 13: Migrating On-Premises Hadoop Workloads to Amazon EMR 17. Chapter 14: Best Practices and Cost-Optimization Techniques 18. Other Books You May Enjoy

Building Hadoop jobs with dependencies in a specific EMR release version

When you build different Hadoop, Hive, or Spark jobs and execute them on a specific version of the EMR cluster, you might often face version conflict issues between your application code and its dependencies because the specific versions of libraries your code expects might not be available in the cluster. So, it's necessary that you build your application code against the libraries available in the cluster.

Starting with the Amazon EMR 5.18.0 release, you can integrate the Amazon EMR artifact repository, using which you can build your application to avoid version conflicts or runtime classpath errors when you execute them in the EMR cluster.

You can add the artifact repository to your Maven project or with pom.xml, which has the following syntax:

https://<s3-endpoint>/<region-ID-emr-artifacts>/<emr-release-label>/repos/maven/

Now, let's understand each parameter of the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image