Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Quantum Computing with Silq Programming

You're reading from   Quantum Computing with Silq Programming Get up and running with quantum computing with the simplicity of this new high-level programming language

Arrow left icon
Product type Paperback
Published in Apr 2021
Publisher Packt
ISBN-13 9781800569669
Length 310 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Thomas Cambier Thomas Cambier
Author Profile Icon Thomas Cambier
Thomas Cambier
Srinjoy Ganguly Srinjoy Ganguly
Author Profile Icon Srinjoy Ganguly
Srinjoy Ganguly
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Section 1: Essential Background and Introduction to Quantum Computing
2. Chapter 1: Essential Mathematics and Algorithmic Thinking FREE CHAPTER 3. Chapter 2: Quantum Bits, Quantum Measurements, and Quantum Logic Gates 4. Chapter 3: Multiple Quantum Bits, Entanglement, and Quantum Circuits 5. Chapter 4: Physical Realization of a Quantum Computer 6. Section 2: Challenges in Quantum Programming and Silq Programming
7. Chapter 5: Challenges in Quantum Computer Programming 8. Chapter 6: Silq Programming Basics and Features 9. Chapter 7: Programming Multiple-Qubit Quantum Circuits with Silq 10. Section 3: Quantum Algorithms Using Silq Programming
11. Chapter 8: Quantum Algorithms I – Deutsch-Jozsa and Bernstein-Vazirani 12. Chapter 9: Quantum Algorithms II – Grover's Search Algorithm and Simon's Algorithm 13. Chapter 10: Quantum Algorithms III – Quantum Fourier Transform and Phase Estimation 14. Section 4: Applications of Quantum Computing
15. Chapter 11: Quantum Error Correction 16. Chapter 12: Quantum Cryptography – Quantum Key Distribution 17. Chapter 13: Quantum Machine Learning 18. Other Books You May Enjoy

Introducing multiple quantum bits

Multiple qubit operations will allow us to implement more complex quantum algorithms in the upcoming chapters. Dealing with multiple qubits is a core requirement in quantum computing because in most cases, the information can only be encoded by the use of many qubits. Multiple qubits also bring flexibility in computation as we can perform quantum operations more conveniently.

You studied some of the basics of tensor products in Chapter 1, Essential Mathematics and Algorithmic Thinking, which will now help you to appreciate the nature of multiple qubits in a quantum computing environment. As we know, single qubits are denoted as |0>, |1>, or any generic state . To denote two qubits, we use the notation |00>, |11>, or any generic state, such as . We can have two different quantum subsystems, each having their own vector spaces. Their interactions can be denoted by the addition and scalar multiplication of the vector elements, which we...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime