Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python Data Science Essentials

You're reading from   Python Data Science Essentials A practitioner's guide covering essential data science principles, tools, and techniques

Arrow left icon
Product type Paperback
Published in Sep 2018
Publisher Packt
ISBN-13 9781789537864
Length 472 pages
Edition 3rd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Luca Massaron Luca Massaron
Author Profile Icon Luca Massaron
Luca Massaron
Alberto Boschetti Alberto Boschetti
Author Profile Icon Alberto Boschetti
Alberto Boschetti
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. First Steps FREE CHAPTER 2. Data Munging 3. The Data Pipeline 4. Machine Learning 5. Visualization, Insights, and Results 6. Social Network Analysis 7. Deep Learning Beyond the Basics 8. Spark for Big Data 9. Strengthen Your Python Foundations 10. Other Books You May Enjoy

Preparing tools and datasets

As introduced in the previous chapters, the Python package for machine learning with the lion's share is scikit-learn. In this chapter, we also will use XGboost, LightGBM, and Catboost: you'll find the instructions in the relevant sections.

The motivations for using scikit-learn developed at Inria, the French Institute for Research in Computer Science and Automation (inria.fr/en/), are multiple. It is worthwhile at this point to mention the most important reasons for using scikit-learn for the success of your data science project:

  • A consistent API (fit, predict, transform, and partial_fit) across models that naturally helps to correctly implement data science procedures working on data organized in NumPy arrays
  • A complete selection of well-tested and scalable classical models for machine learning, offering many out-of-core implementations...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image