Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Data Analysis, Second Edition

You're reading from   Python Data Analysis, Second Edition Data manipulation and complex data analysis with Python

Arrow left icon
Product type Paperback
Published in Mar 2017
Publisher Packt
ISBN-13 9781787127487
Length 330 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Ivan Idris Ivan Idris
Author Profile Icon Ivan Idris
Ivan Idris
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Getting Started with Python Libraries FREE CHAPTER 2. NumPy Arrays 3. The Pandas Primer 4. Statistics and Linear Algebra 5. Retrieving, Processing, and Storing Data 6. Data Visualization 7. Signal Processing and Time Series 8. Working with Databases 9. Analyzing Textual Data and Social Media 10. Predictive Analytics and Machine Learning 11. Environments Outside the Python Ecosystem and Cloud Computing 12. Performance Tuning, Profiling, and Concurrency A. Key Concepts
B. Useful Functions C. Online Resources

Sentiment analysis

Opinion mining or sentiment analysis is a hot new research field dedicated to the automatic evaluation of opinions as expressed on social media, product review websites, or other forums. Often, we want to know whether an opinion is positive, neutral, or negative. This is, of course, a form of classification, as seen in the previous section. As such, we can apply any number of classification algorithms. Another approach is to semi-automatically (with some manual editing) compose a list of words with an associated numerical sentiment score (the word "good" can have a score of 5 and the word "bad" a score of -5). If we have such a list, we can look up all the words in a text document and, for example, sum up all the found sentiment scores. The number of classes can be more than three, as in a five-star rating scheme.

We will apply naive Bayes classification to the NLTK movie reviews corpus with the goal of classifying movie reviews as either positive...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime