Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Data Analysis

You're reading from   Practical Data Analysis Pandas, MongoDB, Apache Spark, and more

Arrow left icon
Product type Paperback
Published in Sep 2016
Publisher
ISBN-13 9781785289712
Length 338 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Hector Cuesta Hector Cuesta
Author Profile Icon Hector Cuesta
Hector Cuesta
Dr. Sampath Kumar Dr. Sampath Kumar
Author Profile Icon Dr. Sampath Kumar
Dr. Sampath Kumar
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Getting Started 2. Preprocessing Data FREE CHAPTER 3. Getting to Grips with Visualization 4. Text Classification 5. Similarity-Based Image Retrieval 6. Simulation of Stock Prices 7. Predicting Gold Prices 8. Working with Support Vector Machines 9. Modeling Infectious Diseases with Cellular Automata 10. Working with Social Graphs 11. Working with Twitter Data 12. Data Processing and Aggregation with MongoDB 13. Working with MapReduce 14. Online Data Analysis with Jupyter and Wakari 15. Understanding Data Processing using Apache Spark

Data formats


When we are working with data for human consumption, the easiest way to store it is in text files. In this section, we will present parsing examples of the most common formats such as CSV, JSON, and XML. These examples will be very helpful in the following chapters.

Tip

The dataset used for these examples is a list of Pokemon by National Pokedex number, obtained from: http://bulbapedia.bulbagarden.net/All the scripts and dataset files can be found in the author's GitHub repository: https://github.com/hmcuesta/PDA_Book/tree/master/Chapter3

CSV is a very simple and common open format for table-like data, which can be exported and imported by most of the data analysis tools. CSV is a plain text format; this means that the file is a sequence of characters, with no data that has to be interpreted instead, such as binary numbers.

There are many ways to parse a CSV file from Python, and here we will discuss two:

The first eight records of the CSV file (pokemon.csv) look like this:

 id,...
You have been reading a chapter from
Practical Data Analysis - Second Edition
Published in: Sep 2016
Publisher:
ISBN-13: 9781785289712
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime