Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Big Data Analytics

You're reading from   Practical Big Data Analytics Hands-on techniques to implement enterprise analytics and machine learning using Hadoop, Spark, NoSQL and R

Arrow left icon
Product type Paperback
Published in Jan 2018
Publisher Packt
ISBN-13 9781783554393
Length 412 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Nataraj Dasgupta Nataraj Dasgupta
Author Profile Icon Nataraj Dasgupta
Nataraj Dasgupta
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Too Big or Not Too Big FREE CHAPTER 2. Big Data Mining for the Masses 3. The Analytics Toolkit 4. Big Data With Hadoop 5. Big Data Mining with NoSQL 6. Spark for Big Data Analytics 7. An Introduction to Machine Learning Concepts 8. Machine Learning Deep Dive 9. Enterprise Data Science 10. Closing Thoughts on Big Data 11. External Data Science Resources 12. Other Books You May Enjoy

When do you know you have a big data problem and where do you start your search for the big data solution?

Finally, big data analytics refers to the practice of putting the data to work--in other words, the process of extracting useful information from large volumes of data through the use of appropriate technologies. There is no exact definition for many of the terms used to denote different types of analytics, as they can be interpreted in different ways and the meaning hence can be subjective.

Nevertheless, some are provided here to act as references or starting points to help you in forming an initial impression:

  • Data mining: Data mining refers to the process of extracting information from datasets through running queries or basic summarization methods such as aggregations. Finding the top 10 products by the number of sales from a dataset containing all the sales records of one million products at an online website would be the process of mining: that is, extracting useful information from a dataset. NoSQL databases such as Cassandra, Redis, and MongoDB are prime examples of tools that have strong data mining capabilities.
  • Business intelligence: Business intelligence refers to tools such as Tableau, Spotfire, QlikView, and others that provide frontend dashboards to enable users to query data using a graphical interface. Dashboard products have gained in prominence in step with the growth of data as users seek to extract information. Easy-to-use interfaces with querying and visualization features that could be used universally by both technical and non-technical users set the groundwork to democratize analytical access to data.
  • Visualization: Data can be expressed both succinctly and intuitively, using easy-to-understand visual depictions of the results. Visualization has played a critical role in understanding data better, especially in the context of analyzing the nature of the dataset and its distribution prior to more in-depth analytics. Developments in JavaScript, which saw a resurgence after a long period of quiet, such as D3.js and ECharts from Baidu, are some of the prime examples of visualization packages in the open source domain. Most BI tools contain advanced visualization capabilities and, as such, it has become an indispensable asset for any successful analytics product.
  • Statistical analytics: Statistical analytics refers to tools or platforms that allow end users to run statistical operations on datasets. These tools have traditionally existed for many years, but have gained traction with the advent of big data and the challenges that large volumes of data pose in terms of performing efficient statistical operations. Languages such as R and products such as SAS are prime examples of tools that are common names in the area of computational statistics.
  • Machine learning: Machine learning, which is often referred to by various names such as predictive analytics, predictive modeling, and others, is in essence the process of applying advanced algorithms that go beyond the realm of traditional statistics. These algorithms inevitably involve running hundreds or thousands of iterations. Such algorithms are not only inherently complex, but also very computationally intensive.

The advancement in technology has been a key driver in the growth of machine learning in analytics, to the point where it has now become a commonly used term across the industry. Innovations such as self-driving cars, traffic data on maps that adjust based on traffic patterns, and digital assistants such as Siri and Cortana are examples of the commercialization of machine learning in physical products.

You have been reading a chapter from
Practical Big Data Analytics
Published in: Jan 2018
Publisher: Packt
ISBN-13: 9781783554393
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime