Evaluating prediction results with visualizations
We have specified the callbacks that store the loss and accuracy information for each epoch to be saved as the variable history
. We can retrieve this data from the dictionary history.history
. Let's check out the dictionary keys
:
print(history.history.keys())
This will output dict_keys(['loss', 'acc'])
.
Next, we will plot out the loss
function and accuracy
along epochs in line graphs:
import pandas as pd import matplotlib matplotlib.style.use('seaborn') # Here plots the loss function graph along Epochs pd.DataFrame(history.history['loss']).plot() plt.legend([]) plt.xlabel('Epoch') plt.ylabel('Loss') plt.title('Validation loss across 100 epochs',fontsize=20,fontweight='bold') plt.show() # Here plots the percentage of accuracy along Epochs pd.DataFrame(history.history['acc']).plot() plt.legend([]) plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.title('Accuracy loss across 100 epochs',fontsize=20,fontweight='bold') plt.show()
Upon training, we can...