Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning with Swift

You're reading from   Machine Learning with Swift Artificial Intelligence for iOS

Arrow left icon
Product type Paperback
Published in Feb 2018
Publisher Packt
ISBN-13 9781787121515
Length 378 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Jojo Moolayil Jojo Moolayil
Author Profile Icon Jojo Moolayil
Jojo Moolayil
Oleksandr Baiev Oleksandr Baiev
Author Profile Icon Oleksandr Baiev
Oleksandr Baiev
Alexander Sosnovshchenko Alexander Sosnovshchenko
Author Profile Icon Alexander Sosnovshchenko
Alexander Sosnovshchenko
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Getting Started with Machine Learning FREE CHAPTER 2. Classification – Decision Tree Learning 3. K-Nearest Neighbors Classifier 4. K-Means Clustering 5. Association Rule Learning 6. Linear Regression and Gradient Descent 7. Linear Classifier and Logistic Regression 8. Neural Networks 9. Convolutional Neural Networks 10. Natural Language Processing 11. Machine Learning Libraries 12. Optimizing Neural Networks for Mobile Devices 13. Best Practices

Convolution operation


Convolution is one of the most important operations in the image processing. Blurring, sharpening, edge detection, denoising, embossing and many other familiar operations in image editors are actually convolutions. It is similar to the pooling operation in some way, because it is also a sliding window operation, but instead of taking the average over the window, it performs element-wise multiplication by the kernel – matrix of size n × n and sums the result. The result of the operation depends on the kernel (also known as convolution filter) – a matrix, which is usually square, but not necessarily, see Figure 9.3. The notions of the stride and padding are the same as in the pooling case:

Figure 9.3: Different convolution filters have different effects on the picture

Convolution operation works in the following way (see the following diagram):

  • The convolution kernel (filter) slides over the image from left to right, and from top to bottom
  • At each position, we calculate an...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image