Stacking models for meta-learning
Rather than using a canned ensembling method like bagging, boosting, or random forests, there are situations in which a tailored approach to ensembling is warranted. Although these tree-based ensembling techniques combine hundreds or even thousands of learners into a single, stronger learner, the process is not much different than training a traditional machine learning algorithm, and suffers some of the same limitations, albeit to a lesser degree. Being based on decision trees that have been weakly trained and minimally tuned may, in some cases, put a ceiling on the ensemble’s performance relative to one composed of a more diverse set of learning algorithms that have been extensively tuned with the benefit of human intelligence. Furthermore, although it is possible to parallelize tree-based ensembles like random forests and XGB, this only parallelizes the computer’s effort—not the human effort of model building.
Indeed, it...