Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Linux Kernel Debugging

You're reading from   Linux Kernel Debugging Leverage proven tools and advanced techniques to effectively debug Linux kernels and kernel modules

Arrow left icon
Product type Paperback
Published in Aug 2022
Publisher Packt
ISBN-13 9781801075039
Length 638 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Kaiwan N. Billimoria Kaiwan N. Billimoria
Author Profile Icon Kaiwan N. Billimoria
Kaiwan N. Billimoria
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Part 1: A General Introduction and Approaches to Kernel Debugging
2. Chapter 1: A General Introduction to Debugging Software FREE CHAPTER 3. Chapter 2: Approaches to Kernel Debugging 4. Part 2: Kernel and Driver Debugging Tools and Techniques
5. Chapter 3: Debug via Instrumentation – printk and Friends 6. Chapter 4: Debug via Instrumentation – Kprobes 7. Chapter 5: Debugging Kernel Memory Issues – Part 1 8. Chapter 6: Debugging Kernel Memory Issues – Part 2 9. Chapter 7: Oops! Interpreting the Kernel Bug Diagnostic 10. Chapter 8: Lock Debugging 11. Part 3: Additional Kernel Debugging Tools and Techniques
12. Chapter 9: Tracing the Kernel Flow 13. Chapter 10: Kernel Panic, Lockups, and Hangs 14. Chapter 11: Using Kernel GDB (KGDB) 15. Chapter 12: A Few More Kernel Debugging Approaches 16. Other Books You May Enjoy

Finding memory leakage issues with kmemleak

What is a memory leak and why does it matter? A memory leak is a situation where you have allocated memory dynamically but failed to free it. Well, you think you have succeeded in freeing it but the reality is that it hasn't been freed. The classic pedagogical case is a simple one like this (let's just make it a userspace example for simplicity):

static foo(void) {

    char *ptr = malloc(1024);
    /* ... work with it ... */
    // forget to free it
}

Now, once you return from the function foo(), it's basically impossible to free the memory pointed to by the variable ptr. Why? You know it, ptr is a local variable and is out of scope once you've returned from foo(). Now, the 1,024 bytes of allocated memory is, in effect, locked up, inaccessible, wasted – we call this a leak. Of course, once the user process dies, it's freed back to...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image