Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning NumPy Array

You're reading from   Learning NumPy Array Supercharge your scientific Python computations by understanding how to use the NumPy library effectively

Arrow left icon
Product type Paperback
Published in Jun 2014
Publisher
ISBN-13 9781783983902
Length 164 pages
Edition Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ivan Idris Ivan Idris
Author Profile Icon Ivan Idris
Ivan Idris
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Learning NumPy Array
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
1. Getting Started with NumPy FREE CHAPTER 2. NumPy Basics 3. Basic Data Analysis with NumPy 4. Simple Predictive Analytics with NumPy 5. Signal Processing Techniques 6. Profiling, Debugging, and Testing 7. The Scientific Python Ecosystem Index

The NumPy array object


NumPy has a multidimensional array object called ndarray. It consists of two parts as follows:

  • The actual data

  • Some metadata describing the data

The majority of array operations leave the raw data untouched. The only aspect that changes is the metadata.

We have already learned in the previous chapter how to create an array using the arange() function. Actually, we created a one-dimensional array that contained a set of numbers. The ndarray object can have more than one dimension.

The advantages of using NumPy arrays

A NumPy array is a general homogeneous array—the items in an array have to be of the same type (there is a special array type that is heterogeneous). The advantage is that if we know that the items in an array are of the same type, it is easy to determine the storage size required for the array. NumPy arrays can perform vectorized operations working on a whole array. Contrast this to Python lists, where normally you have to loop through the list and perform operations...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image