Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Learning Geospatial Analysis with Python-Second Edition

You're reading from   Learning Geospatial Analysis with Python-Second Edition An effective guide to geographic information systems and remote sensing analysis using Python 3

Arrow left icon
Product type Paperback
Published in Dec 2015
Publisher Packt
ISBN-13 9781783552429
Length 394 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Joel Lawhead Joel Lawhead
Author Profile Icon Joel Lawhead
Joel Lawhead
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Learning Geospatial Analysis with Python FREE CHAPTER 2. Geospatial Data 3. The Geospatial Technology Landscape 4. Geospatial Python Toolbox 5. Python and Geographic Information Systems 6. Python and Remote Sensing 7. Python and Elevation Data 8. Advanced Geospatial Python Modeling 9. Real-Time Data 10. Putting It All Together Index

Creating a color hillshade


In this example, we'll combine the previous techniques in order to combine our terrain hillshade from Chapter 7, Python and Elevation Data, with the color classification that we used on the LIDAR. For this example, we'll need the ASCII Grid DEMs named dem.asc and relief.asc that we used in the previous chapter. We'll create a colorized DEM and a hillshade and then use PIL in order to blend them together for an enhanced elevation visualization. The code comments will guide you through the example as many of these steps are already familiar to you:

import gdal_array as gd
try:
    import Image
except:
    from PIL import Image

relief = "relief.asc"
dem = "dem.asc"
target = "hillshade.tif"

# Load the relief as the background image
bg = gd.numpy.loadtxt(relief, skiprows=6)

# Load the DEM into a numpy array as the foreground image
fg = gd.numpy.loadtxt(dem, skiprows=6)[:-2, :-2]

# Create a blank 3-band image to colorize the DEM
rgb = gd.numpy.zeros((3, len(fg), len...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image